We present a theoretical study of the electronic transport through
single-molecule junctions incorporating a Pt6 metal cluster bound within an
organic framework. We show that the insertion of this molecule between a pair
of electrodes leads to a fully atomically engineered nano-metallic device with
high conductance at the Fermi level and two sequential high on/off switching
states. The origin of this property can be traced back to the existence of a
HOMO which consists of two degenerate and asymmetric orbitals, lying close in
energy to the Fermi level of the metallic leads. Their degeneracy is broken
when the molecule is contacted to the leads, giving rise to two resonances
which become pinned close to the Fermi level and display destructive
interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am.
Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ