166 research outputs found

    Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis

    Get PDF
    Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior and their prognostic value in head and neck cancers remains unclear. The aim of this study was to examine the predictive value of GLUT1, GLUT3, and HIF-1α messenger RNA (mRNA)/protein expression as markers of tumor aggressiveness and prognosis in laryngeal cancer. The level of hypoxia/metabolic marker genes was determined in 106 squamous cell laryngeal cancer (SCC) and 73 noncancerous matched mucosa (NCM) controls using quantitative realtime PCR. The related protein levels were analyzed by Western blot. Positive expression of SLC2A1, SLC2A3, and HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer samples. Higher levels of mRNA/protein for GLUT1 and HIF-1α were noted in SCC compared to NCM (p<0.05). SLC2A1 was found to have a positive relationship with grade, tumor front grading (TFG) score, and depth and mode of invasion (p<0.05). SLC2A3 was related to grade and invasion type (p<0.05). There were also relationships of HIF-1α with pTNM, TFG scale, invasion depth and mode, tumor recurrences, and overall survival (p<0.05). In addition, more advanced tumors were found to be more likely to demonstrate positive expression of these proteins. In conclusion, the hypoxia/metabolic markers studied could be used as molecular markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory fund of the Department of Cytobiochemistry, University of Łódź, Poland (506/811), and by grant fromtheNational Science Council, Poland (N403 043 32/2326)

    A new approach for obtaining rapid uniformity in rice (Oryza sativa L.) via a 3x x 2x cross

    Get PDF
    A triploid (2n = 3x = 36) rice plant was obtained by screening a twin seedling population in which each seed germinated to two or three sprouts that were then crossed with diploid plants. One diploid plant was chosen among the various F1 progenies and developed into an F 2 population via self-pollination. Compared with the control variety Shanyou 63, this F 2 population had a stable agronomical performance in field trials, as confirmed by the F-test. The stability of the F 2 population was further substantiated by molecular analysis with simple sequence repeat markers. Specifically, of 160 markers assayed, 37 (covering all 12 chromosomes) were polymorphic between the parental lines. Testing the F 1 hybrid individually with these markers showed that each PCR product had only a single band instead of two bands from each parent. The bands were identical to either maternal (23 markers) or paternal (eight markers) bands or distinct from both parents (six markers). The amplified bands of all 60 randomly selected F 2 plants were uniform and identical to those of the F 1 hybrid. These results suggest that the F 1 plant is a non-segregating hybrid and that a stable F 2 population was obtained. This novel system provides an efficient means for shortening the cycle of hybrid rice seed production

    Cytochrome P450 in Pharmacogenetics: An Update

    Get PDF
    cited By 1Interindividual variability in drug disposition is a major cause of lack of efficacy and adverse effects of drug therapies. The majority of hepatically cleared drugs are metabolized by cytochrome P450 (CYP) enzymes, mainly in families CYP1, CYP2, and CYP3. Genes encoding these enzymes are highly variable with allele distribution showing considerable differences between populations. Genetic variability of especially CYP2C9, CYP2C19, CYP2D6, and CYP3A5 is known to have clear clinical impact on drugs that are metabolized by these enzymes. CYP1A2, CYP2A6, CYP2B6, CYP2C8, and CYP3A4 all show variability that affects pharmacokinetics of drugs as well, but so far the evidence regarding their clinical implications is not as conclusive. In this review, we provide an up-to-date summary of the pharmacogenetics of the major human drug-metabolizing CYP enzymes, focusing on clinically significant examples. © 2018 Elsevier Inc.Peer reviewe

    The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology

    Get PDF
    Small fibre neuropathy (SFN), a condition dominated by neuropathic pain, is frequently encountered in clinical practise either as prevalent manifestation of more diffuse neuropathy or distinct nosologic entity. Aetiology of SFN includes pre-diabetes status and immune-mediated diseases, though it remains frequently unknown. Due to their physiologic characteristics, small nerve fibres cannot be investigated by routine electrophysiological tests, making the diagnosis particularly difficult. Quantitative sensory testing (QST) to assess the psychophysical thresholds for cold and warm sensations and skin biopsy with quantification of somatic intraepidermal nerve fibres (IENF) have been used to determine the damage to small nerve fibres. Nevertheless, the diagnostic criteria for SFN have not been defined yet and a ‘gold standard’ for clinical practise and research is not available. We screened 486 patients referred to our institutions and collected 124 patients with sensory neuropathy. Among them, we identified 67 patients with pure SFN using a new diagnostic ‘gold standard’, based on the presence of at least two abnormal results at clinical, QST and skin biopsy examination. The diagnosis of SFN was achieved by abnormal clinical and skin biopsy findings in 43.3% of patients, abnormal skin biopsy and QST findings in 37.3% of patients, abnormal clinical and QST findings in 11.9% of patients, whereas 7.5% patients had abnormal results at all the examinations. Skin biopsy showed a diagnostic efficiency of 88.4%, clinical examination of 54.6% and QST of 46.9%. Receiver operating characteristic curve analysis confirmed the significantly higher performance of skin biopsy comparing with QST. However, we found a significant inverse correlation between IENF density and both cold and warm thresholds at the leg. Clinical examination revealed pinprick and thermal hypoesthesia in about 50% patients, and signs of peripheral vascular autonomic dysfunction in about 70% of patients. Spontaneous pain dominated the clinical picture in most SFN patients. Neuropathic pain intensity was more severe in patients with SFN than in patients with large or mixed fibre neuropathy, but there was no significant correlation with IENF density. The aetiology of SFN was initially unknown in 41.8% of patients and at 2-year follow-up a potential cause could be determined in 25% of them. Over the same period, 13% of SFN patients showed the involvement of large nerve fibres, whereas in 45.6% of them the clinical picture did not change. Spontaneous remission of neuropathic pain occurred in 10.9% of SFN patients, while it worsened in 30.4% of them

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)

    Get PDF
    Rust and late leaf spot (LLS) are the two major foliar fungal diseases in groundnut, and their co-occurrence leads to significant yield loss in addition to the deterioration of fodder quality. To identify candidate genomic regions controlling resistance to rust and LLS, whole-genome resequencing (WGRS)-based approach referred as ‘QTL-seq’ was deployed. A total of 231.67 Gb raw and 192.10 Gb of clean sequence data were generated through WGRS of resistant parent and the resistant and susceptible bulks for rust and LLS. Sequence analysis of bulks for rust and LLS with reference-guided resistant parent assembly identified 3136 single-nucleotide polymorphisms (SNPs) for rust and 66 SNPs for LLS with the read depth of ≥7 in the identified genomic region on pseudomolecule A03. Detailed analysis identified 30 nonsynonymous SNPs affecting 25 candidate genes for rust resistance, while 14 intronic and three synonymous SNPs affecting nine candidate genes for LLS resistance. Subsequently, allele-specific diagnostic markers were identified for three SNPs for rust resistance and one SNP for LLS resistance. Genotyping of one RIL population (TAG 24 × GPBD 4) with these four diagnostic markers revealed higher phenotypic variation for these two diseases. These results suggest usefulness of QTL-seq approach in precise and rapid identification of candidate genomic regions and development of diagnostic markers for breeding applications

    AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls

    Get PDF
    Xyloglucan is the most abundant hemicellulose in the walls of dicots such as Arabidopsis. It is part of the load-bearing structure of a plant cell and its metabolism is thought to play a major role in cell elongation. However, the molecular mechanism by which xyloglucan carries out this and other functions in planta is not well understood. We performed a forward genetic screen utilizing xyloglucan oligosaccharide mass profiling on chemically mutagenized Arabidopsis seedlings to identify mutants with altered xyloglucan structures termed axy-mutants. One of the identified mutants, axy3.1, contains xyloglucan with a higher proportion of non-fucosylated xyloglucan subunits. Mapping revealed that axy3.1 contains a point mutation in XYLOSIDASE1 (XYL1) known to encode for an apoplastic glycoside hydrolase releasing xylosyl residues from xyloglucan oligosaccharides at the non-reducing end. The data support the hypothesis that AXY3/XYL1 is an essential component of the apoplastic xyloglucan degradation machinery and as a result of the lack of function in the various axy3-alleles leads not only to an altered xyloglucan structure but also a xyloglucan that is less tightly associated with other wall components. However, the plant can cope with the excess xyloglucan relatively well as the mutant does not display any visible growth or morphological phenotypes with the notable exception of shorter siliques and reduced fitness. Taken together, these results demonstrate that plant apoplastic hydrolases have a larger impact on wall polymer structure and function than previously thought

    Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells <it>in vitro</it>. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis.</p> <p>Methods</p> <p>PC-3 cells (5 × 10<sup>5</sup>) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry.</p> <p>Results</p> <p>Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm<sup>3</sup>, range: 96–485 mm<sup>3</sup>, <it>n </it>= 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm<sup>3</sup>, range: 209–1350 mm<sup>3</sup>, <it>n </it>= 13) (<it>p </it>< 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (<it>p </it>< 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (<it>p </it>< 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (<it>p </it>< 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed.</p> <p>Conclusion</p> <p>Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by decreased angiogenesis and increased apoptosis. The results suggest that bisphosphonates have anti-tumoral and anti-invasive effects on primary prostate cancer.</p
    corecore