527 research outputs found

    Relativistic strong-field ionization of hydrogen-like atomic systems in constant crossed electromagnetic fields

    Full text link
    Relativistic strong-field ionization of hydrogen-like atoms or ions in a constant crossed electromagnetic field is studied. The transition amplitude is formulated within the strong-field approximation in G\"oppert-Mayer gauge, with initial and final electron states being described by the corresponding Dirac-Coulomb and Dirac-Volkov wave functions, respectively. Coulomb corrections to the electron motion during tunneling are taken into account by adjusting an established method to the present situation. Total and energy-differential ionization rates are calculated and compared with predictions from other theories in a wide range of atomic numbers and applied field strengths.Comment: 9 pages, 4 figure

    Exact Asymptotic Behaviour of Fermion Correlation Functions in the Massive Thirring Model

    Full text link
    We obtain an exact asymptotic expression for the two-point fermion correlation functions in the massive Thirring model (MTM) and show that, for β2=8π\beta^2=8\pi, they reproduce the exactly known corresponding functions of the massless theory, explicitly confirming the irrelevance of the mass term at this point. This result is obtained by using the Coulomb gas representation of the fermionic MTM correlators in the bipolar coordinate system.Comment: To appear in J. Phys. A: Math. Gen. 12 page

    On renormalizability of the massless Thirring model

    Full text link
    We discuss the renormalizability of the massless Thirring model in terms of the causal fermion Green functions and correlation functions of left-right fermion densities. We obtain the most general expressions for the causal two-point Green function and correlation function of left-right fermion densities with dynamical dimensions of fermion fields, parameterised by two parameters. The region of variation of these parameters is constrained by the positive definiteness of the norms of the wave functions of the states related to components of the fermion vector current. We show that the dynamical dimensions of fermion fields calculated for causal Green functions and correlation functions of left-right fermion densities can be made equal. This implies the renormalizability of the massless Thirring model in the sense that the ultra-violet cut-off dependence, appearing in the causal fermion Green functions and correlation functions of left-right fermion densities, can be removed by renormalization of the wave function of the massless Thirring fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality is added,the parameterisation of fermion determinant by two parameters is confirmed,it is shown that dynamical dimensions of fermion fields calculated from different correlation functions can be made equal.This allows to remove the dependence on the ultra-violet cut-off by the renormalization of the wave function of Thirring fermion fields onl

    Smooth Bosonization as a Quantum Canonical Transformation

    Get PDF
    We consider a 1+1 dimensional field theory which contains both a complex fermion field and a real scalar field. We then construct a unitary operator that, by a similarity transformation, gives a continuum of equivalent theories which smoothly interpolate between the massive Thirring model and the sine-Gordon model. This provides an implementation of smooth bosonization proposed by Damgaard et al. as well as an example of a quantum canonical transformation for a quantum field theory.Comment: 20 pages, revte

    Equivalent bosonic theory for the massive Thirring model with non-local interaction

    Full text link
    We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass-expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the famous Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional strongly correlated systems and finite-size Quantum Field Theories.Comment: 15 pages, latex, no figure

    Исследование остаточных углеводородов в ходе деструкции гептана углеводородокисляющими микроорганизмами рода Pseudomonas и Rodococcus

    Get PDF
    Molding of micro structures by injection molding leads to special requirements for the molds e.g. regarding wear resistance and low release forces of the molded components. At the same time it is not allowed to affect the replication precision. Physical vapor deposition (PVD) is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the melt of polymers. Physical vapor deposition technology allows the deposition of thin films on micro structures. Therefore, the influence of these PVD layers on the contour accuracy of the replicated micro structures has to be investigated. For this purpose injection mold inserts were laser structured with micro structures of different sizes and afterwards coated with two different coatings, which were deposited by a magnetron sputter ion plating PVD technology. After deposition, the coatings were analyzed by techniques regarding hardness, Young's modulus and morphology. The geometries of the micro structures were analyzed by scanning electron microscopy before and after coating. Afterwards, the coated mold inserts were used for injection molding experiments. During the injection molding process, a conventional and a variothermal temperature control of the molds were used. The molded parts were analyzed regarding roughness, structure height and structure width by means of laser microscopy

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    corecore