415 research outputs found

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    Cardiac magnetic resonance imaging parameters as surrogate endpoints in clinical trials of acute myocardial infarction

    Get PDF
    Cardiac magnetic resonance (CMR) offers a variety of parameters potentially suited as surrogate endpoints in clinical trials of acute myocardial infarction such as infarct size, myocardial salvage, microvascular obstruction or left ventricular volumes and ejection fraction. The present article reviews each of these parameters with regard to the pathophysiological basis, practical aspects, validity, reliability and its relative value (strengths and limitations) as compared to competitive modalities. Randomized controlled trials of acute myocardial infarction which have used CMR parameters as a primary endpoint are presented

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Modeling Core Metabolism in Cancer Cells: Surveying the Topology Underlying the Warburg Effect

    Get PDF
    BACKGROUND: Alterations on glucose consumption and biosynthetic activity of amino acids, lipids and nucleotides are metabolic changes for sustaining cell proliferation in cancer cells. Irrevocable evidence of this fact is the Warburg effect which establishes that cancer cells prefers glycolysis over oxidative phosphorylation to generate ATP. Regulatory action over metabolic enzymes has opened a new window for designing more effective anti-cancer treatments. This enterprise is not trivial and the development of computational models that contribute to identifying potential enzymes for breaking the robustness of cancer cells is a priority. METHODOLOGY/PRINCIPAL FINDINGS: This work presents a constraint-base modeling of the most experimentally studied metabolic pathways supporting cancer cells: glycolysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative phosphorylation. To evaluate its predictive capacities, a growth kinetics study for Hela cell lines was accomplished and qualitatively compared with in silico predictions. Furthermore, based on pure computational criteria, we concluded that a set of enzymes (such as lactate dehydrogenase and pyruvate dehydrogenase) perform a pivotal role in cancer cell growth, findings supported by an experimental counterpart. CONCLUSIONS/SIGNIFICANCE: Alterations on metabolic activity are crucial to initiate and sustain cancer phenotype. In this work, we analyzed the phenotype capacities emerged from a constructed metabolic network conformed by the most experimentally studied pathways sustaining cancer cell growth. Remarkably, in silico model was able to resemble the physiological conditions in cancer cells and successfully identified some enzymes currently studied by its therapeutic effect. Overall, we supplied evidence that constraint-based modeling constitutes a promising computational platform to: 1) integrate high throughput technology and establish a crosstalk between experimental validation and in silico prediction in cancer cell phenotype; 2) explore the fundamental metabolic mechanism that confers robustness in cancer; and 3) suggest new metabolic targets for anticancer treatments. All these issues being central to explore cancer cell metabolism from a systems biology perspective

    Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    Get PDF
    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering

    Happy heart syndrome. role of positive emotional stress in takotsubo syndrome

    Get PDF
    AIMS: Takotsubo syndrome (TTS) is typically provoked by negative stressors such as grief, anger, or fear leading to the popular term 'broken heart syndrome'. However, the role of positive emotions triggering TTS remains unclear. The aim of the present study was to analyse the prevalence and characteristics of patients with TTS following pleasant events, which are distinct from the stressful or undesirable episodes commonly triggering TTS. METHODS AND RESULTS: Takotsubo syndrome patients with preceding pleasant events were compared to those with negative emotional triggers from the International Takotsubo Registry. Of 1750 TTS patients, we identified a total of 485 with a definite emotional trigger. Of these, 4.1% (n = 20) presented with pleasant preceding events and 95.9% (n = 465) with unequivocal negative emotional events associated with TTS. Interestingly, clinical presentation of patients with 'happy heart syndrome' was similar to those with the 'broken heart syndrome' including symptoms such as chest pain [89.5% (17/19) vs. 90.2% (412/457), P = 1.0]. Similarly, electrocardiographic parameters, laboratory findings, and 1-year outcome did not differ. However, in a post hoc analysis, a disproportionate higher prevalence of midventricular involvement was noted in 'happy hearts' compared with 'broken hearts' (35.0 vs. 16.3%, P = 0.030). CONCLUSION: Our data illustrate that TTS can be triggered by not only negative but also positive life events. While patient characteristics were similar between groups, the midventricular TTS type was more prevalent among the 'happy hearts' than among the 'broken hearts'. Presumably, despite their distinct nature, happy and sad life events may share similar final common emotional pathways, which can ultimately trigger TTS
    corecore