273 research outputs found

    Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    Get PDF
    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve. © 2016 American Physical Society

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Changes in insulin resistance indicators, IGFs, and adipokines in a year-long trial of aerobic exercise in postmenopausal women

    Get PDF
    Physical activity is a known modifiable lifestyle means for reducing postmenopausal breast cancer risk, but the biologic mechanisms are not well understood. Metabolic factors may be involved. In this study, we aimed to determine the effects of exercise on insulin resistance (IR) indicators, IGF1, and adipokines in postmenopausal women. The Alberta Physical Activity and Breast Cancer Prevention Trial was a two-armed randomized controlled trial in postmenopausal, inactive, cancer-free women. A year-long aerobic exercise intervention of 225 min/week (n=160) was compared with a control group asked to maintain usual activity levels (n=160). Baseline, 6- and 12-month serum levels of insulin, glucose, IGF1, IGF-binding protein 3 (IGFBP3), adiponectin, and leptin were assayed, and after data collection, homeostasis model assessment of IR (HOMA-IR) scores were calculated. Intention-to-treat analyses were performed using linear mixed models. The treatment effect ratio (TER) of exercisers to controls was calculated. Data were available on 308 (96.3%) women at 6 months and 310 (96.9%) women at 12 months. Across the study period, statistically significant reductions in insulin (TER=0.87, 95% confidence interval (95% CI)=0.81–0.93), HOMA-IR (TER=0.86, 95% CI=0.80–0.93), and leptin (TER=0.82, 95% CI=0.78–0.87), and an increase in the adiponectin/leptin ratio (TER=1.21, 95% CI=1.13–1.28) were observed in the exercise group compared with the control group. No significant differences were observed for glucose, IGF1, IGFBP3, adiponectin or the IGF1/IGFBP3 ratio. Previously inactive postmenopausal women who engaged in a moderate-to-vigorous intensity exercise program experienced changes in insulin, HOMA-IR, leptin, and adiponectin/leptin that might decrease the risk for postmenopausal breast cancer

    Cancer and heart attack survivors’ expectations of employment status: results from the English Longitudinal Study of Ageing

    Get PDF
    Background: Sociodemographic, health- and work-related factors have been found to influence return to work in cancer survivors. It is feasible though that behavioural factors, such as expectation of being at work, could also affect work-related outcomes. Therefore, the effect of earlier identified factors and expectation of being at work on future employment status in cancer survivors was explored. To assess the degree to which these factors specifically concern cancer survivors, a comparison with heart attack survivors was made. Methods: Data from the English Longitudinal Study of Ageing were used. Cancer and heart attack survivors of working age in the UK were included and followed up for 2 years. Baseline characteristics of both cancer and heart attack survivors were compared regarding employment status. Univariate and multivariate regression analyses were performed in survivors at work, and the interaction between independent variables and diagnose group was assessed. Results: In cancer survivors at work (N = 159), alcohol consumption, participating in moderate or vigorous sport activities, general health and participation were univariate associated with employment status at two-year followup. Only fair general health (compared to very good general health) remained statistically significant in the multivariate model (OR 0.31; 95% CI 0.13–0.76; p = 0.010). In heart attack survivors at work (N = 78), gender, general health and expectation of being at work were univariate associated with employment status at follow-up. Female gender (OR 0.03; 95% CI 0.00–0.57; p = 0.018) and high expectation of being at work (OR 10.68; 95% CI 1.23–93.92; p = 0.033) remained significant in the multivariate model. The influence of gender (p = 0.066) and general health (p = 0.020) regarding employment status was found to differ significantly between cancer and heart attack survivors. Conclusions: When predicting future employment status in cancer survivors in the UK, general health is the most relevant factor to consider. While expectation of being at work did not show any significant influence in cancer survivors, in heart attack survivors, it should not be disregarded though, when developing interventions to affect their employment status. Future research should focus on more specific measures for expectation, and additional behavioural factors, such as self-efficacy, and their effect on employment status

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105,106,107Mpc3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12(10-10+52) for binary neutron star mergers, of 0-0+19(1-1+91) for neutron star–black hole mergers, and 17-11+22(79-44+89) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers. © 2020, The Author(s)

    Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression

    Get PDF
    Background: Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α -smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. Methods: In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. Results: While normal fibroblasts produced components of interstitial matrix and TGF- β 1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α 6 β 4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. Conclusions: Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1. © 2019 authors. Published by the American Physical Society

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
    corecore