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We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a
linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency
scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and
to permit the application of linear control techniques. The error signal combined with the transmitted power
is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which
enables the implementation of an optimal controller. The experimental results validate the controller
design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional
proportional-integral controller. More important, the time-varying Kalman filtering approach automatically
reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear
time-invariant controllers cannot achieve.
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I. INTRODUCTION

Cavity locking is a ubiquitous problem in many fields
of research employing single-frequency lasers. For appli-
cations in fields such as spectroscopy [1,2], quantum
information [3,4], optical imaging [5], and many others, it
is necessary to lock the cavity length of an optical
resonator to the frequency of a laser (or vice versa) to
achieve transmission of the light through the cavity (or a
desired frequency noise reduction). One of the most
advanced applications that necessitates cavity locking is
interferometric gravitational-wave detection [6,7], where
numerous controllers are employed to ensure high-duty-
cycle operation. To maximize the duty cycle, it is essential to
ensure rapid relocking of all cavities. Typical schemes used
for cavity locking (or, correspondingly, laser frequency
locking) include the Pound-Drever-Hall technique [8],
Hänsch-Couillaud locking [9], homodyne locking [10],
and midfringe locking [11]. The error signal required for
cavity locking is inherently nonlinear, rendering lock
acquisition nontrivial. In general, when cavity lock is lost,
lock reacquisition is achieved by scanning the cavity length
(usually with a piezoelectric transducer) until a resonance is
found, then interrupting the scan and engaging the controller.
This process can be automated to speed up relocking (termed
autolocking [12]).

In this paper, we demonstrate a new autolocking scheme
based on modern control techniques using a linear time-
varying Kalman filter combined with a linear quadratic
regulator (LQR). This scheme was proposed in Ref. [13]
and simulations suggested reliable, more robust, and faster
frequency-lock acquisition than traditional proportional-
integral (PI) control.
Kalman filtering is an effective modern control tech-

nique, which can be employed to estimate the state of a
dynamical system using noise-corrupted measurements.
For cavity locking, a phase-sensitive measurement and
an amplitude measurement are required to quantitatively
determine the cavity detuning. In our setup, we utilize the
error signal generated by homodyne locking and the
transmitted power signal to estimate the detuning, which
is used by the Kalman filter to estimate the system state.
The successful implementation of a LQR controller and a
time-invariant Kalman filter for cavity locking was pre-
viously demonstrated in Ref. [14]. However, linear time-
invariant controllers are unable to acquire lock if the system
is operating in the nonlinear regime.
For the implementation of our controller, we set up an

optical plant, which we describe in Sec. II. In Sec. III, we
introduce linear quadratic Gaussian control (LQG). We
need to make simplifying assumptions to enable the
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application of linear control and estimation techniques, as
outlined in Secs. IVand V. Details regarding the realization
of our control scheme are given in Sec. VI. The results are
presented in Sec. VII as a comparison with a PI controller,
highlighting our controller’s improved performance and
that our controller does not fail in the nonlinear region.
Moreover, our controller design automatically achieves
frequency lock from any given operating point without
requiring a frequency scan.

II. THE OPTICAL PLANT

We set up a three-mirror ring cavity as shown schemati-
cally in Fig. 1 to demonstrate operation of the proposed
control scheme. The parameters of the optical resonator
(given in Table I) are chosen to provide easy and convenient
handling of the system to test new locking schemes. For
this reason, a cavity with a low finesse of F ≈ 10 and a
large spectral linewidth of Δν ≈ 65 MHz (corresponding to
a decay rate κ ≈ 410 × 106 rad=s) is constructed. This
results in a small power buildup within the optical resonator
and a suitably large linear region of the error signal. The
two measured output signals are y1, the phase quadrature of
the reflected beam, measured via homodyne detection, and
y2, the intensity of the transmitted beam measured by a
single photodetector; the measured signals are shown in
Fig. 6 (see Sec. VII). Complete knowledge of the plant is
required for the modern control approach described in
Secs. III–V.
First, we describe the dynamics of the optical system

using the Heisenberg picture with the following cavity
differential equations [15]:

_a ¼ −
�
κ

2
− iΔ

�
a − ffiffiffi

κ
p

0ðβ þ b0Þ − ffiffiffi
κ

p
1b1 − ffiffiffi

κ
p

LbL;

ð1Þ

bout ¼
ffiffiffi
κ

p
0aþ β þ b0; ð2Þ

b1;out ¼
ffiffiffi
κ

p
1aþ b1; ð3Þ

where a is the annihilation operator of the intracavity field
and b the annihilation operator of the input field. The cavity
input from the laser can be expressed as a boson field
b ¼ β þ b0, where the operator b is written as a combi-
nation of a complex number β (describing the coherent
amplitude of the field) and an operator b0 (describing the
fluctuations of the field). κ is the total decay rate of the
cavity and is the sum of the individual decay rates κ0, κ1,
and κL of the optical fields b, b1 (the input field from the
rear plane mirror or output coupler), and bL (the optical loss
field) coupling to the cavity, respectively,

κ ¼ κ0 þ κ1 þ κL: ð4Þ

Δ is the frequency detuning between the cavity and laser
given by

Δ ¼ fc − fL ¼ q
c
nL

− fL; ð5Þ

where fc is the resonance frequency of the cavity, fL the
laser frequency, nL the optical path length of the cavity
(with n being the index of refraction and L the physical
path length), c the speed of light, and q a large integer
indicating the qth longitudinal cavity mode. A good over-
view of cavity dynamics can be found in Refs. [15,16].
The two measured outputs are given by

y1 ¼ e−iϕbout þ eiϕb†out

¼ ffiffiffi
κ

p
0ðe−iϕaþ eiϕa†Þ þ 2β cosϕþ q0; ð6Þ

y2 ¼ b†1;outb1;out

¼ κ1a†aþ ffiffiffiffiffi
κ1

p ða†b1 þ b†1aÞ þ b†1b1; ð7Þ

where q0 is a Gaussian white noise describing the noise of
the input field, and ϕ is the homodyne measurement angle.
For our polarization-based homodyne locking scheme, ϕ

y
1

y
2

u

b

Piezo. actuator

λ/2

λ/4

λ/2

outb

1,out
b

1b

Lb

PD

HD

FIG. 1. Schematic of the optical plant including the optical
fields bi, the control input to the piezoelectric actuator u, and the
measured outputs y1 and y2 corresponding to the error signal and
the transmitted signal, respectively. HD, PD, λ=2, and λ=4 refer to
homodyne detector, single photodetector, half-wave, and quarter-
wave plate, respectively.

TABLE I. Parameters of the optical plant.

Parameter Value

Wavelength 1550 nm
Finesse ≈10
Spectral linewidth ≈65 MHz
Waist 453 μm
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is determined by the orientation of the quarter-wave- or
half-wave-plate combination in the beam path [10].
We rewrite the cavity dynamics in quadrature operator
form; the amplitude and phase quadratures q and p are
then defined by

q ¼ aþ a†; p ¼ iða† − aÞ:

In the following section, we use the quadrature operator form
to convert the cavity dynamics into a state-space model
which is used to design the controller which consists of a
time-varying Kalman filter and a LQR controller.

III. LINEAR QUADRATIC GAUSSIAN CONTROL

A systematic modern control approach is extremely
beneficial when the complexity of the system under
consideration grows beyond the scale where heuristic
techniques are viable. In Ref. [14], it was demonstrated
that the application of modern control techniques can lead
to a cavity frequency lock with improved bandwidth and
higher stability margins than a traditional PI controller. In
this section, we give an overview of LQG control, and in
the following sections, we show how it can be applied to
lock the resonance frequency of an optical cavity to the
laser frequency. To design a discrete-time LQG controller, a
linear discrete-time state-space model of the plant is
required; a practical model should also include sensor
and actuator dynamics. A time-invariant state-space model
without direct feedthrough from the input to the output
(D ¼ 0) can be expressed in the following form:

xkþ1 ¼ Axk þ Buk þ wk; ð8Þ

yk ¼ Cxk þ vk; ð9Þ

where xk ∈ Rn is the state vector, uk ∈ Rm is the input
vector, and yk ∈ Rp is the output vector at time instant k.
The matrix A ∈ Rn×n is called the system or state matrix,
and it represents the system dynamics. The input matrix
B ∈ Rn×m describes how the inputs affect the time evolu-
tion of the system, and the output matrix C ∈ Rp×n

describes how the measured outputs depend on the system
states. The process noise wk ∈ Rm and measurement noise
vk ∈ Rp are both assumed to be white Gaussian noises. A
LQG controller consists of the combination of a LQR and a
linear quadratic estimator. The LQR problem is an optimal
control problem where we seek to optimize the performance
of the closed-loop system with respect to a quadratic cost
function. A typical infinite-horizon discrete-time cost
function J may take the form

J ¼
X∞
k¼0

xTkQxk þ uTkRuk; ð10Þ

where Q ∈ Rn×n and R ∈ Rm×m are design parameters.
The term xTkQxk regulates the speed of convergence of the
state variables xk, and the term uTkRuk sets constraints for
the applied control energy. The optimal control law is a
static state feedback law of the form

uk ¼ −Fxk; ð11Þ

where the constant feedback gain F is calculated by

F ¼ ðBTSBþ RÞ−1BTSA; ð12Þ

where S satisfies the algebraic Riccati equation

0 ¼ AT ½S − SBðBTSBþ RÞ−1BS�A − SþQ: ð13Þ

There are several limitations of static state feedback
control. First, feedforward control is required to eliminate
the steady-state tracking error, and, therefore, perfect
knowledge of the plant model is required. Second, with
state feedback, the states cannot converge in the presence of
constant input or output disturbances. To regulate the
detuning Δ to 0 in the presence of unmodeled external
disturbances, such as 1=f laser phase noise, integral control
must be included. Integral action can be built into the LQR
problem by adding another system state qkþ1 ¼ qk þ yk,
which integrates the system output. The augmented state-
space model then becomes

�
xkþ1

qkþ1

�
¼

�
A 0

C I

��
xk
qk

�
þ
�
B

0

�
~uk þ ~wk; ð14Þ

~yk ¼
�
C 0

��
xk
qk

�
þ ~vk: ð15Þ

The LQR control design can be performed on the aug-
mented system f ~A; ~B; ~Cg where

~A ¼
�
A 0

C I

�
; ~B ¼

�
B

0

�
;

~C ¼
�
C 0

�
; ~xk ¼

�
xk
qk

�
:

The resulting controller will be robust to errors in plant
modeling, will be able to reject constant disturbances, and
we will be able to drive the detuning to 0.
As shown in Fig. 2(a), the LQR controller requires

complete knowledge of the system states; often this knowl-
edge is not accessible and must, therefore, be estimated.
The separation principle in control theory states that the
design of an optimal feedback controller for a stochastic
system can be achieved by designing an optimal estimator
and feeding the optimal state estimate into the deterministic
optimal feedback controller as shown in Fig. 2(b).
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The linear quadratic estimation problem is mathemati-
cally equivalent to the LQR problem, where the weighting
factors in the cost function reflect the process and meas-
urement noise statistics. When the process and measure-
ment noises are white Gaussian, the optimal estimator is the
Kalman filter. The solution of the algebraic Riccati equa-
tion determines the steady-state Kalman filter gain. In the
time-varying case, the covariance matrix evolves in accor-
dance with the dynamic Riccati equation, thus, causing the
Kalman filter gain to vary with time.
For our case, we need to formulate the cavity dynamics

in state-space form:

�
_q

_p

�
¼

�− κ
2

−Δ
Δ − κ

2

��
q

p

�
−
�
2β

ffiffiffiffiffi
κ0

p
0

�

− ffiffiffi
κ

p
0

�
cosϕ sinϕ

− sinϕ cosϕ

��
q0
p0

�

−
ffiffiffi
κ

p
1

�
1 0

0 1

��
q1
p1

�
− ffiffiffi

κ
p

L

�
1 0

0 1

��
qL
pL

�
; ð16Þ

y1 ¼ k2
ffiffiffi
κ

p
0½ cosϕ sinϕ �

�
q

p

�

þ k2½ 1 0 �
�
q0
p0

�
þ 2k2β cosϕþ ~v1; ð17Þ

y2¼ ~k2

�
κ1
4
ðp2þq2Þþ

ffiffiffiffiffi
κ1

p
2

½q p �
�
q1
p1

��
þ ~v2; ð18Þ

where ~v1 and ~v2 are sensor noises related to the outputs of
the system, and k2, ~k2 represent the transimpedance gains
of the photodetectors.

Unfortunately, the analytically derived state-space model
does not completely describe the physical system; the true
physical dynamics are more complex due to the dynamics
of the piezoelectric actuator attached to one of the end
mirrors to control the cavity length. Hence, we measure the
cavity transfer function by injecting a swept sine into the
controlled input u and measuring the error signal y1
generated via homodyne detection. In the linear range, it
is assumed that Δ ∝ y1, and, therefore, we identify a model
of the following form:

xkþ1 ¼ Āxk þ B̄uk; ð19Þ
Δk ¼ C̄xk: ð20Þ

By utilizing subspace system identification [17], we are
able to construct a state-space model of the system, which
includes the dynamics of the piezoelectric actuator.
Since, in general, the error signal y1 does not vary

linearly with respect to the detuning, which also affects the
system matrix of the linear state-space model, the control
problem is nonlinear. We address this problem by sim-
plifying the system via the singular perturbation method
[18] and then implementing a time-varying Kalman filter as
described in the following sections.

IV. SINGULAR PERTURBATION METHOD

To develop a controller that automatically achieves lock
from any given operating point, we need to construct an
appropriate control law. The control law covers not just the
linear, but also the nonlinear region of the generated error
signal. We use the singular perturbation method [18] to
simplify our system and ensure that a linear control
approach can still be applied. The singular perturbation
method decomposes the optical cavity into two subsystems
which differ by their time constants. This decomposition is
called a separation of time scales. In this case, the
dynamics of the optical cavity are fast with respect to
the mechanical assembly. The slow block, whose output is
the detuning, is followed by a fast block, which can be
modeled as a static sensor nonlinearity applied to the
output. This approach enables the use of linear control
techniques. To determine the behavior of the static non-
linearity, we set _q ¼ _p ¼ 0 to obtain

�
q

p

�
¼ −1

ðκ
2
Þ2 þ Δ2

�
κβ

ffiffiffiffiffi
κ0

p
2β

ffiffiffiffiffi
κ0

p Δ

�
: ð21Þ

For the case when ϕ ¼ π=2, the outputs y1 and y2 can be
expressed as

y1 ¼ k2
ffiffiffiffiffi
κ0

p
pþ 2k2β cosϕþ v1

¼ − 2k2βκ0Δ
ðκ
2
Þ2 þ Δ2

þ v1

¼ f1ðΔÞ þ v1; ð22Þ

(a)

(b)

FIG. 2. (a) Linear quadratic regulator with static feedback gain
K which is determined by solving the infinite-horizon LQR
problem. The LQR controller requires direct access to the state.
(b) LQG controller with feedback of the estimated state x̂.
Integral action is included when the augmented system is utilized.
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y2 ¼
~k2κ1ðp2 þ q2Þ

2
þ v2 ¼

1

2

~k2κ1κ0β2

ðκ
2
Þ2 þ Δ2

þ v2

¼ f2ðΔÞ þ v2: ð23Þ

If the optical cavity is perturbed strongly and leaves the
linear region of operation, we cannot unambiguously
determine the detuning if y1 is the only measurement, as
shown in Fig. 6. Therefore, we complement y1 with y2 to
correctly ascertain the detuning. Even when both y1 and y2
are used, both signals tend to zero for very large detuning
and become very sensitive to noise. Because of this, we set
up a bounded-noise model estimating the actual state of our
system via noise-corrupted measurements. In our case, the
measurement noise is unknown but bounded. To fulfill this
constraint at each time instant, the measurement noises v1;k
and v2;k need to satisfy the inequalities

v21;k ≤ μ21; v22;k ≤ μ22; ð24Þ

where μ1 and μ2 are fixed constants denoting the upper
bound for the magnitude of the noise. We then consider the
problem of characterizing the set of all possible Δk
compatible with the given observations y1;k and y2;k to
find the set Sk that fulfills the inequalities in Eq. (24),

Sk ¼ fΔk ∈ R∶½y1;k − f1ðΔkÞ�2 ≤ μ21 and

½y2;k − f2ðΔkÞ�2 ≤ μ22g: ð25Þ

Using Eqs. (22)–(24), it is straightforward to verify that Sk
corresponds to the set of Δk ∈ R satisfying the inequalities

ð16Δ4
k þ κ4Þðy21;k − μ21Þ þ 64Δ3

kk2βκ0y1;k

þ 8Δ2
kð8k22β2κ20 þ κ2y21;k − κ2μ21Þ

þ 16Δkk2βκ0κ2y1;k ≤ 0; ð26Þ

ð16Δ4
k þ κ4Þðy22;k − μ22Þ

þ 8Δ2
kðκ2y22;k − 4k3κ0β2y2;k − κ2μ22Þ

− 8κ2k3β2κ0y2;k þ 16k23β
4κ20 ≤ 0: ð27Þ

The set Sk is constructed by solving the inequalities (26)
and (27) using Laguerre’s method [19,20]. If we obtain m
roots as a solution, they will define mþ 1 regions of
interest:

Sk;1 ¼ fΔk ∈ R∶ −∞ < Δk < Δk;1g;
Sk;2 ¼ fΔk ∈ R∶Δk;1 < Δk < Δk;2g;

..

.

Sk;m ¼ fΔk ∈ R∶Δk;m−1 < Δk < Δk;mg;
Sk;mþ1 ¼ fΔk ∈ R∶Δk;m < Δk < ∞g:

The set Sk consists of the subsets Sk;i satisfying Eqs. (26)
and (27) at time instant k. Let us briefly outline the reasons
for this approach. To apply the Kalman filter, we must
transform the given measurements y1 and y2 into the mean
detuning Δ̄k and its variance. Thus, we present a heuristic
approach, which attempts to convert the given information
into the required quantities. The set Sk can be nonconvex; it
is possible for two regions on either side of the resonance
peak to satisfy the inequalities when the detuning is large.
In this situation, we want to inform the Kalman filter that
there is a large uncertainty in this measurement, which is
reflected by a large variance. Therefore, when we have a
nonconvex solution set we consider S̄k, the convex hull of
Sk (i.e., we force the set to become convex by including all
possible values between the minimum and maximum
values), which makes the set significantly larger with a
large variance. On the other hand, when Sk consists of only
one subset Sk;i, the set is equal to its convex hull Sk ¼ S̄k,
and the variance is small, reflecting our increased con-
fidence that this is, in fact, the actual detuning. Taking the
convex hull of the solution set is motivated intuitively, and
we develop the following equations for the mean value Δ̄k
and the standard deviation σk, where we assume a uniform
distribution over the convex set S̄k,

Δ̄k ¼
1

2
½ min
Δk∈S̄k

ðΔkÞ þ max
Δk∈S̄k

ðΔkÞ�; ð28Þ

σk ¼
1

2
ffiffiffi
3

p ½max
Δk∈S̄k

ðΔkÞ − min
Δk∈S̄k

ðΔkÞ�: ð29Þ

The quantities Δ̄k and σ2k represent the new measurement
for the detuning and the measurement covariance. These
quantities are utilized in the time-varying Kalman filter,
which is described in the following section. A schematic
highlighting this algorithm is shown in Fig. 3. For more
algorithm-specific details, refer to the simulations per-
formed in Ref. [13].

V. TIME-VARYING KALMAN FILTER

The Kalman filter utilizes the mathematical model of the
system and the measurements to estimate inaccessible
system states. For an optimal estimate, the process and
measurement noises must be known white Gaussian
processes. There are two stages to the time-varying
Kalman filter: the prediction step and the update step.

Time-varying
Kalman 
filter

y
1

y
2

x~̂

2

k

k

Set 
membership 
block

FIG. 3. Block diagram for the calculation of the state estimate ~̂x.
y1, y2 are the measured signals, Δ̄ is the estimated mean detuning,
and σ2 is the estimated measurement covariance.
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In the prediction step, the Kalman filter uses the current
state estimate ~̂xk and error covariance Pk to predict the state
estimate and error covariance at the next time step using the
system model,

~̂x−kþ1 ¼ ~A ~̂xk þ ~B ~uk; ð30Þ

P−
kþ1 ¼ ~APk

~AT þ ~BW ~BT; ð31Þ

where W is the covariance of the process noise and is
assumed to be diagonal. Here, ~̂x−k , P−

k denote the a priori
quantities. The a posteriori state estimate and error covari-
ance are given by ~̂xk and Pk, respectively.
In the update step, the Kalman filter compares the

measured output to the predicted output. The Kalman gain
weights the difference between the predicted and measured
outputs and optimally adjusts the state estimate. The
Kalman gain Kk is the optimal weighting factor based
on the specified noise statistics, and it determines whether
the measurement or the model-generated state estimate is
more reliable at each time instant. The Kalman filter is
optimal in the sense that it minimizes the variance between
the actual and estimated states. The following equations
summarize the update step:

Kk ¼ P−
k
~CTð ~CP−

k
~CT þ σkÞ−1; P−

0 ¼ Px0 ; ð32Þ

~̂xk ¼ ~̂x−k þ Kkð~yk − ~C ~̂x−k Þ; ~̂x−0 ¼ ~̄x0; ð33Þ

Pk ¼ ðI − Kk
~CÞP−

k : ð34Þ

The equations presented here can be found in any standard
text on estimation (for more information, see Refs. [21,22]).
Figure 4 highlights the recursive nature of the time-varying
Kalman filter algorithm. At each time instant k, the new
measurement ~yk ¼ Δ̄k and the measurement covariance σk
are determined from Eqs. (28) and (29).

VI. CONTROL IMPLEMENTATION

The control scheme is implemented on a dSpace DS1103
PPC controller board. The dSpace board consists of
eight digital-to-analog-converter and 16 analog-to-digital-
converter channels with a sampling rate of 300 kHz.

The board is fully programmable via the MATLAB

SIMULINK toolbox and possesses a 16-bit resolution. The
computational results related to S̄k are obtained via a C

program; the update rate is 10 kHz to guarantee sufficient
bandwidth. The result is a highly robust controller that
successfully achieves frequency lock of the optical cavity to
the laser from any operating point. While a 12th-order
polynomial is solved in the simulation [13], we choose to
implement a simpler fourth-order model, which does not
include mode splitting. We can safely neglect mode
splitting, because the gradients of the error signals corre-
sponding to the nondegenerate s- or p-polarized cavity
modes differ in sign, as shown in Fig. 6. Hence, it is only
possible to lock to one mode at a time; in our case, we
choose to lock to the p polarization. A schematic of the
closed-loop system is depicted in Fig. 5.

VII. RESULTS

To validate the proposed controller, we compare its
performance to a typical PI controller designed such that
the gains of the two controllers and, therefore, their residual

FIG. 4. An overview of the dis-
crete-time Kalman filter.

λ/2

λ/4

λ/2

LQR

Time-varying
Kalman filter

HV amplifier

y

1
y

2

Intensity

Phase

u

Set membership 
block

FIG. 5. Schematic of the cavity-locking experiment, including
the combination of a time-varying Kalman filter and a linear
quadratic regulator. The dashed lines depict electronic links.
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frequency noise reductions are approximately equal when
the cavity is locked. The PI controller is configured as
follows:

KPIðsÞ ¼
0.1sþ 316.5

s
: ð35Þ

We first set up an experiment to demonstrate operation in
the linear region, where conventional controllers can
successfully relock the cavity. Then we highlight operation
of our control scheme in the nonlinear region where the PI
controller fails.
The quality and robustness of our locks are determined

by injecting a disturbance in the form of a step function. For
the locked case, the transmitted signal y1 has its maximum
value, and the error signal y2 varies around zero, in contrast
to the unlocked case where y1 and y2 are close to zero;
see Fig. 6.
For the first test, we apply a step voltage to a piezo-

electric actuator mounted to one of the cavity mirrors. The
voltage step is 0.3 V, which drives the detuning to the edge
of the linear region. This disturbance is equivalent to a
detuning of approximately 32 MHz or 0.5κ. Figure 7(a)
shows the effect of the input disturbance on the system
locked with the PI controller. The PI controller reacquires
lock in 0.14 s. Figure 7(b) highlights the response of the
proposed controller, which performs much faster, reacquir-
ing lock in just 0.03 s.
For the second test, we apply a step voltage of 0.4 V to

the piezoelectric actuator. This drives the detuning into
the nonlinear region and is equivalent to a detuning of
approximately 43 MHz or 0.66κ. As a result, the PI
controller is unable to maintain cavity lock as shown in
Fig. 8(a). On the other hand, our proposed control scheme
does reacquire lock in approximately 35 ms, as shown in
Fig. 8(b). Figure 9 illustrates the transfer functions of the
proposed controller at fixed instants of time after applying
the step input at t ¼ 0 s. The controller transfer function
varies in time since it depends on the operating point of
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FIG. 7. Response of the optical system to an input disturbance step function of 0.3 V, equivalent to a detuning Δ ≈ 32 MHz ≈ 0.5κ,
locked with a traditional PI controller (a) and the proposed controller (b). Our controller reacquires lock after 0.03 s, which is superior to
the PI controller reacquiring lock after 0.14 s.
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the system as well as the estimate of the detuning. The
evolution of the controller transfer function is the reason
why the time-varying Kalman filter is capable of operating
in the nonlinear regime. Note that the plots for t ¼ −5 ms
(system in lock before it is disturbed at t ¼ 0 s) and
t ¼ 35 ms (system reacquires lock) overlap and describe
the optimal controller for the frequency-locked case.
When the detuning is very large, the measured output is

essentially white noise. Since the augmented system
includes an integrator, which integrates the output, the
integrated state qk [see Eqs. (14) and (15)] is a Wiener
process, which ensures that the controller converges; it will

move in one direction until y1 and y2 become significant.
Successful operation of the controller also confirms that
we chose suitable bounds for the measurement noises
[see Eq. (24)].
We successfully demonstrate the operation of the

proposed control scheme, highlighting its ability to
automatically reacquire cavity lock—without scanning
the frequency—in an automated way. The PI controller,
and all linear time-invariant controllers for that matter,
will fail in the nonlinear region.

VIII. CONCLUSION

In this paper, we address the problem of automatically
frequency locking an optical cavity from any given
operating point. Our autolocking scheme successfully
overcomes the inherent nonlinearity of the control problem
which arises from the nonlinear error signal. We utilize
techniques from modern control to simplify the nonlinear
control problem to enable the application of well-known
linear control techniques. Compared to a traditional PI
controller, our controller reacquires lock in a significantly
shorter time (0.03 s as opposed to 0.14 s) while in the linear
region. We demonstrate that our autolocking scheme is
capable of autonomously bringing the system back to
resonance even in the presence of large disturbances, which
cause the system to leave the linear region of operation,
where linear time-invariant controllers fail. As our auto-
locking scheme significantly improves the robustness of the
cavity lock (and, hence, the duty cycle), we believe this
technique will be beneficial in a myriad of applications
involving locked cavities.
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FIG. 8. Response of the optical system to an input disturbance step function of 0.4 V, equivalent to a detuning Δ ≈ 43 MHz ≈ 0.66κ
locked with the PI controller (a) and the proposed control scheme (b). Our control scheme reacquires lock after 35 ms, whereas the PI
controller fails to relock the cavity.
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