16 research outputs found

    Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB

    Get PDF
    OBJECTIVE: Hypoxia affects body iron homeostasis; however, the underlying mechanisms are incompletely understood. DESIGN: Using a standardised hypoxia chamber, 23 healthy volunteers were subjected to hypoxic conditions, equivalent to an altitude of 5600 m, for 6 h. Subsequent experiments were performed in C57BL/6 mice, CREB-H knockout mice, primary hepatocytes and HepG2 cells. RESULTS: Exposure of subjects to hypoxia resulted in a significant decrease of serum levels of the master regulator of iron homeostasis hepcidin and elevated concentrations of platelet derived growth factor (PDGF)-BB. Using correlation analysis, we identified PDGF-BB to be associated with hypoxia mediated hepcidin repression in humans. We then exposed mice to hypoxia using a standardised chamber and observed downregulation of hepatic hepcidin mRNA expression that was paralleled by elevated serum PDGF-BB protein concentrations and higher serum iron levels as compared with mice housed under normoxic conditions. PDGF-BB treatment in vitro and in vivo resulted in suppression of both steady state and BMP6 inducible hepcidin expression. Mechanistically, PDGF-BB inhibits hepcidin transcription by downregulating the protein expression of the transcription factors CREB and CREB-H, and pharmacological blockade or genetic ablation of these pathways abrogated the effects of PDGF-BB toward hepcidin expression. CONCLUSIONS: Hypoxia decreases hepatic hepcidin expression by a novel regulatory pathway exerted via PDGF-BB, leading to increased availability of circulating iron that can be used for erythropoiesis

    Biomarkers of Nutrition for Development (BOND)—Iron Review

    Get PDF
    This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation

    Hepcidin is regulated by promoter-associated histone acetylation and HDAC3

    No full text
    Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency (ID) and increased erythropoiesis but is pathologic in thalassaemia and haemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and ID suppress hepcidin via erythroferrone-dependent and -independent mechanisms respectively in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, ID, thalassaemia and haemochromatosis. HDAC3 and its cofactor NCOR1 regulate hepcidin; HDAC3 binds chromatin at the hepcidin locus, and HDAC3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting BMP signaling. In ID mice, the HDAC3 inhibitor RGFP966 increases hepcidin, and RNA-sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by HDAC3

    Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II

    No full text
    Contains fulltext : 95939.pdf (publisher's version ) (Closed access)Congenital dyserythropoietic anaemias (CDAs) are heterogeneous, hereditary disorders hallmarked by ineffective erythropoiesis and tissue iron overload. Growth differentiation factor 15 (GDF15) was suggested to mediate iron overload in iron-loading anaemias, such as the thalassaemias and CDAI by suppressing hepcidin, the key regulator of iron absorption. Here, we show that serum GDF15 concentrations are elevated in subjects with CDAI and CDAII. Despite similar disease characteristics, CDAI patients present with significantly higher GDF15 concentrations compared to CDAII patients. Hepcidin concentrations are inappropriately low in CDAII patients considering the severe hepatic iron overload associated with this disorder. GDF15 significantly correlates with the degree of anaemia (Hb), the response of erythropoiesis (reticulocyte index) as well as with iron availability in the serum (transferrin saturation). The observation that GDF15 is elevated in CDAII patients is consistent with the proposal that GDF15 is among the erythroid factors down-regulating hepcidin and contributing to iron overload in conditions of dyserythropoiesis

    A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression

    No full text
    Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement
    corecore