18 research outputs found

    Petrogenesis of Eocene Tamazert continental carbonatites (Central High Atlas, Morocco): implications for a common source for the Tamazert and Canary and Cape Verde Island carbonatites

    Get PDF
    The Tamazert Eocene alkaline complex of the Central High Atlas Range of Morocco hosts the largest outcropping occurrences of carbonatites in northern Africa. The complex consists of carbonatites and undersaturated ultramafic to syenitic alkaline to peralkaline silicate rocks. Mineralogically and geochemically the Tamazert carbonatites are classified as calciocarbonatites, magnesiocarbonatites and silicocarbonatites.They are enriched in light rare earth elements and large ion lithophile elements (Cs, Rb, Ba, U,Th), but depleted in high field strength elements (particularly, Ti, Nb and Ta). Stable and radiogenic isotope ratios vary in the range of δ13CPDB=-5·8 to 1·8 0/00, δ18OSMOW=6·9-23·5 0/00, initial 87Sr/86Sr=0·7031-0·7076, 143Nd/144Nd=0·5125-0·5129 and 206Pb/204Pb=18·29-19·89. Calciocarbonatites intruding Jurassic limestones have the highest δ13C and δ18O values and the most radiogenic initial 87Sr/86Sr, but least radiogenic 143Nd/144Nd, 206Pb/204Pb and 208Pb/204Pb isotope ratios, and are interpreted to have interacted with the limestones (crustal components). The magnesio- and silicocarbonatites have Sr, Nd and Pb isotope ratios that are nearly identical to those of low-87Sr/86Sr calciocarbonatites. The isotope signature of the high-Sr, low-87Sr/86Sr calciocarbonatites with mantle-type O and C isotopic compositions indicates the presence of HIMU- and EMI-type components in the mantle source of the Tamazert carbonatites, similar to what has been proposed for the Cape Verde and Canary Islands.The close similarity in carbonatite composition between the Cape Verde and Canary Islands and Tamazert suggests a common sublithospheric source for these carbonatites. We therefore propose that theTamazert carbonatites originated through melting of Canary plume material that may have flowed through a sub-lithospheric corridor extending from the Atlantic near the Canary Islands to the Middle Atlas, formed by the delamination of the subcontinental lithosphere in response to Africa-Europe collision at c. 42Ma. Seismic tomography data suggest that the common source may be within the lower mantle at depths >1000 km

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    Petroleum Migration, Fluid Mixing, and Halokinesis as the Main Ore-Forming Processes at the Peridiapiric Jbel Tirremi Fluorite-Barite Hydrothermal Deposit, Northeastern Morocco

    No full text
    The Jbel Tirremi fluorite-barite ± sulfide deposit in northeastern Morocco is hosted in a Jurassic-aged structurally high carbonate platform known as the Jbel Tirremi dome. The host rocks consist of unmetamorphosed, flat-lying early Jurassic dolomitized limestones, locally intruded by Eocene lamprophyre dikes. The orebodies consist mostly of fluorite and barite, and occur as open-space fillings and partial to massive replacement of the enclosing medium- to coarse-grained dolomitized limestones. The ore mineralogy is dominated by fluorite of different colors and habits, barite, and, to a lesser extent, sulfides. Rare earth element compositions along with fluid inclusion, halogen and isotopic data suggest that the fluorite barite mineralization and the spatially associated Eocene alkaline magmatism are petrogenetically unrelated, pointing instead to the regional circulation of hydrothermal basinal brines mixed to various degrees with meteoric water in a dominantly closed rock-buffered system at progressively higher temperatures and fluid/rock ratios. In this respect, fluid inclusion microthermometric measurements show that the ore-bearing hydrothermal system developed in two separate stages of fluorite-barite mineralization, as also revealed by isotopic data. Both stages precipitated from saline fluids at shallow crustal levels (i.e., <5 km), and were related, in varying degrees, to different stages of basin evolution and salt dome growth (salt mobilization and mineralization). During the first stage, the ore fluid was a highly saline aqueous brine with a total salinity up to 44.2 wt % NaCl + KCl equiv, at temperatures ≥82°C and possibly up to 218°C, whereas in the second stage the mineralizing fluid had a similar temperature range, but lower salinities (~20–10 wt % NaCl equiv). The recorded high salinities are interpreted to represent the involvement of a mixture of halite dissolution water and evaporated seawater component. Oxygen (δ18O = 21.7 to 29.6‰ V-SMOW) and carbon (δ13C = −7.9 to 0.2‰ V-PDB) isotope data along with strontium (87Sr/86Sr = 0.70300–070789) and lead (206Pb/204Pb = 17.961–20.96, 207Pb/204Pb = 15.511–15.697, 208Pb/204Pb = 37.784–39.993) isotope ratios suggest the involvement of a mixture of oil-bearing fluids, basinal brines, and meteoric fluids that interacted extensively with the early Jurassic host carbonates, the underlying Triassic salt-bearing diapir, associated siliciclastic rocks, and the highly fractionated and greisenized Hercynian granitic crystalline basement, resulting in the release of fluoride, metals, and other constituents to form the Jbel Tirremi deposit. Petroleum-bearing fluid, released from overpressured portions of the Guercif Basin at lithostatic pressures, and bittern brines dominated the first stage of mineralization. Mixing of saline, oxidized, CaCl2- and sulfate-rich bittern brine with oil-bearing fluid resulted in fluorite precipitation of stage I. Conversely, during the second stage of mineralization, the hydrothermal system was open to the influx of oxidized meteoric water as a consequence of the upward migration of the Triassic salt-bearing diapir and associated pressure decrease. The shift from stage I to stage II is associated with the evolution of the system from lithostatic to mostly hydrostatic pressure conditions. Stage I mineralization is thought to have occurred during the Late Miocene in response to rapid sedimentation and high subsidence rates and subsequent hydrocarbon migration associated with the outward migration of the Rif thrust front. Conversely, stage II mineralization occurred coevally with the uplift phase during Tortonian time

    Cooperative Energy Harvesting Cognitive Radio Networks with Spectrum Sharing and Security Constraints

    Get PDF
    Physical layer security is an important and timely topic in the research of future wireless systems and it constitutes a part of the Internet of Things (IoT) notion. IoT oriented systems are largely characterized by a stringent quality of service and enhanced security requirements, which comes at a cost of increased computational complexity that needs to be maintained within sustainable levels. In the present contribution, we investigate the physical-layer security of a dual-hop energy RF-Powered cognitive radio network over realistic multipath fading conditions. Assuming a spectrum sharing scenario, our analysis assumes that a source S communicates with a destination D with the aid of a multi-antenna relay R and in the presence of an eavesdropper E who is attempting to overhear the communication of both S-R and R-D links. The involved relay is powered by the renewable energy harvested from the signal sent by the source based on the power-splitting energy harvesting strategy. Furthermore, the relay uses a maximum ratio combining technique to process effectively the received signals. In addition, owing to the underlying strategy, both S and R adjust their respective transmit powers in order to avoid causing interference to the primary network. By considering both the independent identically distributed and the independent but not necessarily identically distributed flat Rayleigh fading channels, closed-form expressions for the secrecy outage probability are derived, based on which an asymptotic analysis is carried out. Our results quantify the impact of the main key system parameters and point out the optimal values ensuring a high-security performance of such a communication system. The validity of the derived results is verified extensively through comparisons with respective Monte Carlo simulation results and useful theoretical and technical insights are developed which are expected to be useful in the design of future cooperative CRNs.publishedVersionPeer reviewe

    Physical layer security for dual-hop SWIPT-enabled CR networks

    Get PDF
    We investigate the physical layer security of a relayassisted underlay cognitive radio network with simultaneous wireless information and power transfer (SWIPT). To this end, we consider a secondary network comprising a secondary source S, one secondary user (SU) relay R, one SU destination D, one primary user (PU) transmitter, and one PU receiver. In addition, we consider an eavesdropper E which can overhear both communications of the S→R and R→D links whereas power constraints are imposed on the secondary network in order to maintain a tolerable interference level at the primary network. Under these constraints, we derive a closed-form expression for the secrecy outage probability assuming uncorrelated Rayleigh fading channels. Numerical and simulation results are presented to corroborate the corresponding analysis. It is shown that the harvested energy, energy conversion efficiency, and maximum tolerable interference level imposed on the primary receiver impact considerably the overall system's security.acceptedVersionPeer reviewe

    First results of the THEMIS search coil magnetometers

    No full text
    International audienceWe present the first data from the THEMIS Search Coil Magnetometers (SCM), taken between March and June 2007 while the THEMIS constellation apogee moved from the duskside toward the dawnside. Data reduction, especially the SCM calibration method and spurious noise reduction process, is described. The signatures of magnetic fluctuations in key magnetospheric regions such as the bow shock, the magnetopause and the magnetotail during a substorm, are described. We also discuss the role that magnetic fluctuations could play in plasma transport, acceleration and heating

    A survey on various handoff methods in mobile ad hoc network environment

    No full text
    Communication has never been the same since the advent of cellular phones and numerous applications with different functionalities seem to crop up on a daily basis. Various applications seem to crop up on a daily basis. Ad hoc networks were developed with the intent of creating networks made up of interconnected nodes, on-the-go. Ad hoc networks have numerous applications, the most popular being vehicular ad hoc networks (VANETs). In VANETs, moving vehicles are considered to be the mobile nodes and mobile vehicular nodes move at high speeds. Mobility of the nodes makes it difficult to maintain stable communication links between the nodes and the access points. A process known as handoff is used to bridge this gap and is considered to be one of the solutions for unstable communication links over larger distances. Handoff can usually be seen when the nodes are mobile and start to move away from the access points. This paper discusses and compares various handoff methods that were proposed by various researchers with an intent to increase positive attributes while negating the rest of the components that do not support in increasing the efficiency of the handoff process.</p
    corecore