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The Tamazert Eocene alkaline complex of the Central High Atlas
Range of Morocco hosts the largest outcropping occurrences of car-
bonatites in northern Africa. The complex consists of carbonatites
and undersaturated ultramafic to syenitic alkaline to peralkaline
silicate rocks. Mineralogically and geochemically the Tamazert car-
bonatites are classified as calciocarbonatites, magnesiocarbonatites
and silicocarbonatites. They are enriched in light rare earth elements
and large on lithophile elements (Cs, Rb, Ba, U, Th), but depleted
wn high field strength elements (particularly, Ti, Nb and Ta).
Stable and radiogenic isotope ratios vary in the range of
85Cppp=-58 1o 18%0, 8" Ospion =69-235%, initial
5808y = 0-7031-0-7076, " Nd/** Nd = 0-5125-0-5129  and
25pp Ph = 18-29-19-89. Calciocarbonatites intruding Furassic
limestones have the highest 8”C and 80 values and the most
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radiogenic initial ¥ S1/"°Sr, but least radiogenic " Nd/**Nd,
26Pb " Ph and *"°Pb/"* Pb isotope ratios, and are interpreted to
have interacted with the limestones (crustal components ). The mag-
nesio- and silicocarbonatites have Sr, Nd and Pb isotope ratios that
are nearly identical to those of low-g7Sr/8 OSr calciocarbonatites. The
isotope signature of the high-Sr, low-"Sr/°Sr calciocarbonatites
with mantle-type O and C isotopic compositions indicates the pres-
ence of HIMU- and EMI-type components in the mantle source of
the Tamazert carbonatites, similar to what has been proposed for the
Cape Verde and Canary Islands. The close similarity in carbonatite
composition between the Cape Verde and Canary Islands and
Tamazert suggests a common sublithospheric source for these car-
bonatites. We therefore propose that the Tamazert carbonatites origi-
nated through melting of Canary plume material that may have
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Slowed through a sub-lithospheric corridor extending from the
Atlantic near the Canary Islands to the Middle Atlas, formed by
the delamination of the subcontinental lithosphere in response to
Africa—Europe collision at c. 42 Ma. Seismic tomography data sug-
gest that the common source may be within the lower mantle at
depths > 1000 km.

KEY WORDS: carbon isotopes; carbonatite; crustal contamination;
igneous petrology; isotope; mantle plume; Nd isotopes; oxygen isotopes;
Pb usotopes; Sr isotopes

INTRODUCTION

Cenozoic to Quaternary alkaline-dominated intraplate ig-
neous activity in the Mediterranean area reflects the re-
sponse of the upper mantle to the complex geodynamic
evolution of this vast region, characterized by multiple di-
achronous continent—continent collision, subduction, de-
lamination and rifting events (Lustrino & Wilson, 2007).
Within such a complex geodynamic framework, NW
Africa was the site of extensive alkaline magmatism from
¢. 45 Ma to the present, covering much of the Atlas system
and its adjacent Precambrian basement terranes.
Carbonatite bodies, however, formed exclusively in
Morocco (Siroua, Taourirt and Tamazert, described
herein) and the Canary and Cape Verde Archipelagos
(Bernard-Griffiths et al., 1991; Hoernle & Tilton, 199];
Hoernle et al., 2002; Wagner et al., 2003; and this study).
The NW African plate appears to be the primary area on
Earth known to host both oceanic and continental
carbonatites.

The Eocene Tamazert alkaline complex of Morocco, the
focus of our study, hosts the largest outcropping occur-
rences of carbonatites in northern Africa. Unlike most
known intraplate carbonatites commonly associated with
extensional tectonics (Bell e/ al., 1998), the Tamazert car-
bonatites in the Central High Atlas formed in a compres-
sional regime, reflecting active convergence between the
African and Eurasian plates (Bailey, 1992; Irizon de
Lamotte et al., 2009). This ‘atypical’ geodynamic setting
raises the question of carbonatite petrogenesis, mantle
source components and the effects of the collisional or-
ogeny on magma generation.

Although volumetrically insignificant, carbonatites are
unanimously recognized as important rock types both
petrologically, by providing insights into the chemical evo-
lution of the subcontinental lithospheric upper mantle
(Bell, 2001; Bell & Tilton, 2001) and recycling of oceanic
crust and marine sediments (Hoernle e a/., 2002), and eco-
nomically, as they host many of the worlds largest
REE-rich, Nb-Fe oxide and Cu-Au deposits (Hitzman
et al., 1992; Smith & Henderson, 2000). The genesis of
carbonatites, however, remains controversial. Available
petrogenetic models can be divided into two groups

(Woolley, 2003; Mitchell 2005): (1) direct partial melting
of a carbonated peridotitic mantle; (2) closed-system deriv-
ation at low pressures from a mantle-derived nephelinitic
parental melt, through fractional crystallization and/or
liquid immiscibility. Reflecting the global debate on car-
bonatite genesis, models for the genesis of the Tamazert
carbonatites, and their relationship to the associated
undersaturated silicic rocks, also range from direct deriv-
ation through partial melting of a metasomatized enriched
mantle (Mourtada, 1997) to derivation of carbonatites
from a common parental magma either by crystal fraction-
ation or liquid immiscibility (Bouabdli et al., 1988; Kchit,
1990; Mourtada et al., 1997). Recently, Marks et al. (2008)
proposed that the various rock types of the Tamazert com-
plex originated from distinct melt batches derived from a
heterogeneously carbonated amphibole-lherzolite mantle
source.

Previous studies of the Tamzert complex focused mainly
on the silicate rocks and to a lesser extent on the carbona-
tites. Thus far, only a few carbonatite samples have been
analyzed for their major and trace element composition
and C—O-Sr-Nd isotope ratios (Bouabdli et al., 1988;
Bernard-Griffiths et al., 1991; Mourtada et al., 1997). Here
we present the first comprehensive geochemical dataset
for the Tamazert carbonatites, combining optical and cath-
odoluminescence microscopy, major and trace element
composition of mineral phases and whole-rock samples,
and stable (C, O) and radiogenic (Sr, Nd, Pb) isotope
ratios into an integrated petrogenetic scheme. We examine
crustal and mantle processes involved in the petrogenesis
of the studied carbonatites and provide new constraints on
geodynamic and mantle processes of the northwestern
African plate.

GEOLOGICAL BACKGROUND

The High Atlas Range of southern Morocco represents a
Mesozoic intracratonic rift belt, extending for more than
2000km in an east-west direction from Morocco to
Algeria and Tunisia (Fig. 1), that was subsequently uplifted
as a result of Africa—Europe continental collision. The
Tamazert Eocene complex lies on the northern side of the
Central High Atlas (Fig. 1). The complex was discovered
by Dubar (1939) and subsequently explored in the 1950s to
1960s. Agard (19564, 19564, 1960, 1973, 1977) gave the origin-
al geological description and published the first detailed
geological map providing the basis for further investiga-
tions. Thereafter, numerous detailed geological investiga-
tions focused on the petrography, whole-rock
geochemistry and mineral chemistry of the alkaline sili-
cate rocks and to a lesser extent on the associated carbona-
tites (Aghchmi, 1984; Bouabdli, 1987, Bouabdli et al.,
1988; Kadar, 1984; Kchit, 1990; Bernard-Griffiths et al.,
1991; Bouabdli & Liotard, 1992; Khadem-Allah, 1993;
Khadem Allah et al., 1996, 1998; Mourtada et al., 1997,
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Fig. 1. Geological setting of NW Africa and the Eocene Tamazert igneous complex (modified from Agard, 1973; Kchit, 1990; Duggen et al.,
2009). Also indicated are the locations of the studied samples. Radiometric age data sources: Gourougou, Oujda and Guilliz volcanic fields
from Hernandez & Bellon (1985) and Duggen et al. (2005); Taourirt alkaline lamprophyres and associated carbonatites from Charlot et al.
(1964) and Wagner et al. (2003); Rekkame basanites from Rachdi et al. (1997); Middle Atlas from Bellon & Brousse (1977) and Harmand &
Cantagrel (1984); Saghro and Siroua from Berrahma & Hernandez (1985) and Berrahma et al. (1993).
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Al-Haderi et al., 1998; Salvi et al., 2000; Marks et al., 2008;
Schilling et al., 2009).

Landsat images, aerial photographs and field observa-
tions show that the Tamazert complex is an clongate
ENE-WSW-trending 17 km x 5 km elliptical intrusion cov-
ering a total arca of ~70 km? (Fig. 1). The complex consists
of silica-undersaturated alkalic rocks and carbonatites
that intrude a thick, weakly folded succession of Jurassic
platform carbonates, suggesting a shallow depth of intru-
sion (less than 3km, Salvi et al., 2000; Marks et al., 2008).
Biotite and feldspar separates yielded K—Ar ages of 35 +3
Ma and 39+£2 Ma for nephelinitic dykes (Klein &
Harmand, 1985) and calciocarbonatites (Agard, 1977), re-
spectively; and a Rb/Sr age of 44 £4 Ma for monzonites
(Tisserant et al., 1976).

Field relationships show that the emplacement of the
Tamazert complex is structurally controlled (Mattauer
et al., 1977; Kchit, 1990). The complex is intensely faulted,
which is responsible for its elongated shape. Khadem
Allah et al. (1996) compared the morphology of the com-
plex to an ‘onion bulb) resulting from the inward cooling
of a magma chamber rather than from fracture-
driven magmatic injection. The oldest silicate plutonic
rocks consist of alkaline ultramafic cumulates and asso-
ciated differentiated alkaline rocks. The petrography and
mineralogy of these rocks has been discussed in detail
in the literature (Agard, 1960, 1973, 1977; Bouabdli, 1987;
Bouabdli et al., 1988; Kchit, 1990; Bouabdli & Liotard,
1992; Marks et al. 2008; Schilling et al. 2009) and will
not be repeated here. Based on structural relationships,
Kchit (1990) and Al-Haderi et al. (1998) proposed the fol-
lowing sequence of emplacement: alkaline ultramafites
(jacupirangite, biotite-bearing ultramafites, melteigites,
jolites),
plagiosyenites, malignites, nepheline syenites and monzon-
ites. The last stage of magmatic activity, at about 33 Ma,
is represented by the intrusion and/or extrusion of a variety

shonkinites, foid-monzogabbros, foid-

of multiply oriented dike arrays containing carbonatites,
lamprophyres, porphyritic trachytes, tinguaites and
phonolites, and associated hypovolcanic carbonatitic dia-
tremes. Silicate rocks form the major part of the complex,
whereas carbonatites constitute less than 10% of the total
outcrop area, consistent with what it is commonly
observed in carbonatite—alkaline complexes worldwide
Barker (1989).

Carbonatites crop out in the southwestern (Tamazzart
area) and central parts (Issali-Ighan and Tisslit areas) of
the complex (Fig. 1), both as intrusive and extrusive occur-
rences cutting across the nepheline syenitic (sensu lato; s.l.),
the alkaline ultramafic and the Jurassic carbonate wall-
rocks.

In this study we follow the carbonatite nomenclature
proposed by Gittins & Harmer (1997) and Le Maitre
(2002). Intrusive carbonatites are either associated

with silicate ultramafic cumulates of the plutonic suite
(i.e. melteigites) or the hypovolcanic suite. Melteigite
rocks are associated with the alkaline ultramafic pyroxen-
ites of the Achakhchakh area to the north and Tisslit area
to the south (Fig. 1), which host numerous occurrences
of white, coarse-grained, carbonatitic breccia- to stock-
work-like textured plugs (Fig. 2). These rocks were previ-
ously described as ‘carbonate-bearing silicate rocks’
(Agard, 1960) or as ‘garnet and calcite-bearing melteigites’
(Kchit, 1990).

In contrast, carbonatite occurrences associated with
the hypovolcanic suite rocks are widespread throughout
the Tamazzart, Issali-Ighan and Tisslit areas (Fig. 1).
They occur as stocks and swarms of sub-parallel, variable
grain-size dikes and branching veins extending laterally
within their host silicate rocks over several hundreds
of meters along strike. The dikes and veins crosscut
sharply either the alkaline ultrabasites, the nepheline
syenite (s./), and/or the Liassic limestones. The wall-rocks
are fenitized to a width of 1020 cm, giving rise to a
mineralogical assemblage of sodic amphiboles, phlogo-
pite and albite. In the Issali-Ighan and Tisslit areas,
the vein system strikes north—south, whereas in the
Tamazzart area, the veins strike NE-SW and dip to the
NE at an angle of ~80° Single dikes vary in thick-
ness from a few millimeters to ¢ 4m. The coarse-
grained carbonatite dikes (30-50 cm thick) are intruded
by several thin, fine-grained carbonatite veins, suggest-
ing repeated phases of carbonatite intrusion.
Similarly, some of the veins exhibit crustiform sheeted
structures  with symmetrical ribbons of pegmatitic
carbonatite, indicating successive vein-opening and
vein-filling episodes.

In addition to the intrusive carbonatites, the Tamazert
complex in the Issali-Ighan and Tisslit areas is character-
ized by the presence of various occurrences of extrusive
carbonatites, in the form of diatreme-like structures.
They consist of NE—-SW-trending, 700-1400m long
and 300-800m wide, yellow—brown carbonatitic brec-
cia pipes, cutting across the nepheline syenite (s./), the
ultramafic rocks, the lamprophyres and the Liassic
limestones.

SAMPLE PREPARATION AND

ANALYTICAL METHODS

Approximately 100 samples were studied by standard
thin-section petrography, including staining by alizarin
red and potassium ferricyanide. Of these, about 18 samples
were studied under the cathodoluminescence microscope
and selected for geochemical analysis. An overview of the
mineral phases found in the carbonatite samples is out-
lined inTable 1.
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Fig. 2. Field photographs of typical outcrops (a, b) and thin-section photomicrographs (c—j; cross-polarized light) showing the representative
carbonatite types, specific textures and mineral associations from the Tamazert complex. (a) Field view of slightly inclined sub-horizontal cal-
ciocarbonatite sheet crosscutting the nepheline syenite host-rock in the Tamazzart area. (b) Silicate—carbonate-bearing rock showing chaotic,
non-directional vein brecciation of the melteigite-hosted rock (dark material) by veinlet network (stringers) of calciocarbonatite (white mater-
ial). The field of view is ¢. Im x 0-5m. (c) Coarse-grained melteigite—carbonate-bearing rock showing large subhedral diopside (Cpx) with
interstitial (intercumulus) calcite. Calcite is restricted to the interstices between the mafic silicate minerals. (d) Medium-grained calciocarbona-
tite showing bladed and foliated calcite and associated euhedral prismatic apatite. (e) Medium-grained calciocarbonatite with euhedral zoned
pyrochlore (darker brown and higher relief). (f) Medium-grained calciocarbonatite with euhedral titanite. (g) Sub-cuhedral phlogopite pheno-
cryst in medium-grained calciocarbonatite exhibiting distinct porphyritic texture. (h) Coarse-grained magnesiocarbonatite showing large
zoned rhombs of dolomite with interstitial hydrothermal quartz. (i) Coarse-grained silicocarbonatite containing cumulus calcite crystals lined
with hydrothermal quartz and feldspar grains. (j) Iron-rich matrix-supported polymicritic breccia interpreted to be an accretionary lapilli
and block tuff from a diatreme structure in the Taourirt arca. Ap, apatite; Cc, calcite; Cpx, clinopyroxene; Dol, dolomite; Phl, phlogopite;
Pyr, pyrochlore; Qz, quartz; Ne, nepheline; Ti, titanite.
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Table 2: Representative electron microprobe analyses and structural formula of minerals from the lamazert carbonatites

Mineral: Calcite Dolomite* Dolomite core*  Dolomite border*
Sample no.: TsCal TzCal TzCa2 TzCa3 TzCa4 TzCal B1 B1 1sSi2
Area: Tisslit Tamazzart Tamazzart  Tamazzart  Tamazzart Tamazzart  Issali Igban Issali Igban  Issali Igban
Longitude (W):  4°39'3” 4°42'56" 4°42'33" 4°42'50" 4°41'27" 4°42'56" 4°40'23"
Latitude (N): 32°33'9"  32°32'3” 32°32'4" 32°32'6" 32°32'27” 32°32'3" 32°33'40”
MgCO3 0-07 019 018 0-21 0-23 MgCO3 27-68 39-59 34-50 2895
CaCO3 103-18 103-73 102-53 100-01 98-90 CaCOg3 51-47 53-22 52:77 51-88
MnCO3 0-15 201 1-69 0-83 197 MnCO3 3-89 1:67 2:07 161
FeCO3 0-10 1-04 018 0-50 0-56 FeCO3 18:37 563 10-66 1723
ZnCO3 0-04 0-00 0-00 0-00 0-00 ZnCO3 022 n.d. n.d. 0-09
SrCO3 05 0-85 0-32 0-62 0-53 SrCO3 0-87 n.d. n.d. 0-63
BaCO3 0-01 0-04 0-02 0-05 0-00 BaCO3; 0-00 n.d. n.d. 0-00
Sum 104-04 107-86 104-92 102:21 102-18 Sum 102-50 100-01 100-00 100-39
Calculated on the basis of 6 O Calculated on the basis of 6 O
Mg 0-002 0-004 0-004 0-005 0-005 Mg 0-629 0-667
Ca 1-985 1-934 1-960 1-964 1-944 Ca 0-985 1-007
Mn 0-002 0-033 0-028 0-014 0-034 Mn 0-065 0-027
Fe?* 0-002 0-017 0-003 0-008 0-009 Fe?* 0-304 0-289
Zn 0-001 0-000 0-000 0-000 0-000 Zn 0-003 0-002
Sr 0-007 0-011 0-004 0-008 0-007 Sr 0-011 0-009
Ba 0-000 0-000 0-000 0-000 0-000 Ba 0-000 0-000
Mineral: Ankerite Apatite Phlogopite
Sample no.: IsMg ext TsCal TzCa2 TzCad CMeA TsCa2
Area: Issali Igban Tisslit Tamazzart Tamazzart Achakhchakh Tisslit
Longitude (W): 4°40'23" 4°39'3” 4°42'33" 4°41'27" 4°39'15" 4°39'25"
Latitude (N): 32°33'50” 32°33'9" 32°32'4" 32°32'27" 32°34'50” 32°33'3”
MgCO3 24-35 MgO 0-07 0-04 0-05 MgO 19-08 1510
CaCO3 4920 CaO 54-48 52-65 53-28 CaO 0-10 0-09
MnCO3 3-30 MnO 0-02 0-05 0-03 MnO 1-20 073
FeCO3 22:40 FeO 0-02 0-01 0-04 FeO 10-62 16-44
ZnCO3 0-05 SiO, 0-26 0-10 0-12 Si0, 40-33 3827
SrCO3 0-29 Na,O 0-31 0-40 0-26 K>,0 9-64 924
BaCO3 0-01 P,0s 37-98 3851 38:80 TiO, 0-87 270
Sum 99-60 La,03 0-05 0-37 0-21 Al,03 10-58 1116

Ce,03 0-10 071 0-31 BaO 0-13 0-15

H,0 0-00 0-00 0-00 H,0 353 334

F 475 6:32 5-02 F 091 118

Sum 98-05 99-16 98-12 Sum 97-00 98-40
Calculated on the basis of 6 O Calculated on the basis of 24 (O, OH, F) Calculated on the basis of 25 O
Mg 0-572 Mg 0-020 0-010 0-013 Mg 4-305 3-456
Ca 0-980 Ca 10-301 9-832 10-026 Ca 0-016 0-015
Mn 0-057 Mn 0-003 0-008 0-004 Mn 0-154 0-095
Fe?" 0-386 Fe?" 0-004 0-002 0-006 Fe?" 1-346 2112
Zn 0-001 Si 0-046 0-018 0-021 Si 6-106 5-877
Sr 0-004 Na 0-107 0-137 0-089 K 1-863 1-811
Ba 0-000 P 5-675 5-682 5-768 Ti 0-099 0-312

La 0-003 0-024 0-014 Al 1-888 2:019

Ce 0-006 0-046 0-020 Ba 0-008 0-009

H 0-000 0-000 0-000 F/(F+M) 25-835 38973

F —2-:000 —2-660 —2:113

(continued)
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Table 2: Continued

Mineral: Pyrochlore K-Feldspar Titanite
Sample no.: TzCa2 TzCa4 TzCa3 TzCab IsMg ext TsCa2
Area: Tamazzart Tamazzart Tamazzart Tamazzart Issali Igban Tisslit
Longitude (W): 4°42'33" 4°4127" 4°42'50" 4°4128" 4°40'23" 4°39'25"
Latitude (N): 32°32'4" 32°32'27" 32°32'6” 32°32 32°33'50” 32°33'3"
FeO 0-19 0-04 Si0, 64-19 64-42 64-07 SiO, 30-56
Lay03 0-72 0-40 Al,03 1879 19-05 19-20 TiO, 34-44
Ce,03 2:36 126 MgO 0-01 0-03 0-01 Al,03 0-54
Nd,03 0-60 0-25 Ca0 0-02 0-12 0-03 MgO 0-00
Ta,05 0-00 0-09 FeO 0-00 0-04 0-04 Ca0 27-69
TiO, 713 617 Na O 0-24 0-63 0-25 MnO 0-02
Ca0 13-75 15-13 K20 14-20 14-32 13-18 FeO 185
Nb,O5 59-79 62-48 Sum 97-45 98-62 9677 H,0 4-83
Zr0, 0-67 110 Sum 99-96
Na,O 5-76 712
F 384 4-68
Sum 94-82 9873
Calculated on the basis of 8 O Calculated on the basis of 20 (O, OH)
Si 3-004 2-988 3-:001 Si 3790
Al 1-037 1-041 1-060 Ti 3212
Mg 0-001 0-002 0-001 Al 0-078
Ca 0-001 0-006 0-002 Mg 0-000
Fe?* 0-000 0-002 0-002 Ca 3-683
Na 0-021 0-056 0-230 Mn 0-002
K 0-848 0-847 0-788 Fe?" 0-192
An 0-00 0-01 0-00 F/(F+M) 99-818
Ab 0-02 0-06 0-03
Or 0-98 093 097

*Data from Mourtada (1997).
n.d., not detected.

Mineral and whole-rock major and

trace element data

Mineral chemistry data presented inTable 2 were obtained
using a five-spectrometer CAMECA SX-100 electron
microprobe at Universit¢ Laval, Quebec (Canada).
Selected minerals were analyzed with an accelerating volt-
age of 15kVand a beam current of 20 nA. The beam diam-
eter varied between 1 and 10 um depending on the volatile
abundance in the mineral of interest. Counting time was
20s on the peak and 10s on background. International
standards of natural materials were used for calibration
and all data were reduced with the PAP procedure.

Major and trace element abundances (Ba, Co, Cr, Cu,
Ga, Rb, Sr, V and Zr) in whole-rock powders were
determined on fused pellets with a Philips X'unique PW
1480 X-ray fluorescence spectrometer (XRF) at IFM-
GEOMAR in Kiel (Germany). International reference

standards JB-2, JB-3 (basalt), JA-2, JA-3 (andesite), JR-2,
JR-3 (rhyolite), JG-2, GM (granite) and JF-1 (feldspar)
were analyzed along with the samples. HoO and CO,
were measured photometrically with a Rosemont Infrared
Photometer CWA 5003. Carbonate standard KH was
used for calibration of the photometer and determined to-
gether with the samples. Values measured for the KH
standard deviated less than 0-34% from the standard
value (37:6% COy).

Concentrations of TiOs, AloOg3 NaoO, KoO and most
other trace elements were determined by inductively
coupled plasma-mass spectrometry (ICP-MS) on a
ThermoFinnigan  Element2 at the
Geosciences, University of Bremen (Germany). Pressure

Institute  of

digests were prepared by dissolving 50 mg of sample
powder in an HF—aqua regia mixture inTeflon beakers at
210°C using a MLS Ethos microwave. Analyte solutions
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had a final dilution factor of 1:5000 corresponding to
0-2mg/ml of total dissolved solid, and were spiked with
Ing/ml indium as internal standard. To avoid mass inter-
ferences, K, Ti and the middle REE (MREE) to heavy
REE (HREE) were measured at high resolution (10 000),
Na, Al and transition metals at medium (4000) resolution,
and all other elements at low (300) resolution. Data were
acquired 1n nine passes with dwell times between 0-12 and
2+4s for each element. The instrument was calibrated
using USGS standard reference material BCR-2 for TiO,,
Al O3, NayO and KyO, and a mixture of pure element
standards in various dilutions for all other elements.
External precision as determined by repeated processing
and analyses of BCR-2 was 5-8% for Li, Ho, Er, Yb and
Ta, and 1-5% for other elements. The accuracy of BCR-2
processed and analyzed along with the samples is better
than 10%, except for Zn, Y, Hf, Th and U (up to 15%)
and Cr and Cu (up to 20%), with respect to the USGS ref-
erence values. The whole-rock major and trace element
data are reported in Table 3.

Whole-rock stable and radiogenic

isotope analyses

Carbon and oxygen isotope analyses were carried out at
Royal Holloway University of London (RHUL) using a
PRISM dual-inlet mass spectrometer. Approximately
500 pm of powdered carbonate were weighed into stainless
steel buckets and inserted into a 44-position carousel. This
normally contains 34 unknowns and 10 standards, includ-
ing NBS-19 international limestone standard and RHBNC
internal calcite standard. These drop sequentially into a
common bath of orthophosphoric acid and react at 90°C.
All samples reacted to completion within the 10 min reac-
tion time. Any water present is removed using a methy-
lated spirit trap and the purified GO, frozen into a cold
finger at liquid nitrogen temperature. The gas then passes
into the mass spectrometer for analysis. The raw mass 44,
45 and 46 data are converted to 8"C and §'®O using stand-
ard corrections (Craig, 1957). The corrected data have
precisions of better than +0-1%o for both 8”C and §"0.
The data are calibrated using the two standards
that have values with respect to V-PDB as follows:
NBS-19, &°C=+195% and &%0=-220% and
RHBNC = §"C 4 3-25%0 and §"®O —10-40%o (calibrated
using international standard LSVEC). Isotopic data are re-
ported relative to Vienna SMOW for oxygen and PeeDee
Belemnite (V-PDB) for carbon.

Sr—Nd—Pb isotope analyses were carried out by thermal
lonization mass spectrometry (TIMS) at IFM-GEOMAR
(Germany). Prior to dissolution matrix chips were briefly
washed with cold 2M HCI. Digestion of carbonate and sili-
cate phases was achieved with 6M HCI followed by evap-
oration of the HCI and treatment with a mixture of
concentrated HF and HNOs; Sr was separated and
purified by two passes on the Sr Spec extraction resin.

TAMAZERT CONTINENTAL CARBONATITES

The REE were separated from the matrix elements on
AG50W-X8 cation exchange resin and Nd was separated
from the remaining REE using Eichrom Ln-Spec resin.
Pb was separated and purified by two passes on the
AGI1-X8 anion resin. Sr—Nd isotopic ratios were deter-
mined by TIMS on a TRITON system and Pb isotopes on
a MAT262 RPQ2+ system. Both instruments operate in
static multi-collection mode. Sr and Nd isotopic ratios are
normalized within run to °Sr/*®Sr=01194 and
"ONd/"*Nd =0-7219 and all errors are reported as 20
errors. The Sr isotope data are reported relative to
8Sr /%08y = 0-710250 4 0-000007  (n=17) for NBS987,
whereas the Nd isotope data are reported relative to
NN = 0-511852 £ 0-00006 (n=6) for La Jolla. The
long-term reproducibility of NBS 981 (n=122) is
200pp 204l —16-898 £ 0-007, 27 Ph/2**Pb = 15436 = 0-009,
298ph/2*Ph = 36-523 +0-027 and data are corrected to the
NBS 981 values given by Todt et al. (1996), corresponding
to mass bias drift correction of 0-109, 0-114 and 0-121%/
am.u. for 20%?728ph 2 Ph, respectively. Total chemistry
blanks were <100 pg for Sr, Nd and Pb and thus con-
sidered negligible. Stable and radiogenic isotope data are
reported inTable 4.

PETROGRAPHY AND
MINERALOGY
Petrography
Based on geological occurrence and spatial distribution,
rock fabrics and mineral paragenesis, the Tamazert car-
bonatites are grouped into two main types: calcite car-
bonatites and dolomite carbonatites (hereafter referred to
as calcio- and magnesiocarbonatites, respectively); a third
subordinate carbonatite type defined as silicocarbonatite
(% carbonates <50% vol) is also recognized. More ex-
treme  compositions  (e.g.  ferrocarbonatites  and
strontianite-bearing carbonatites) have been identified by
Mourtada (1997). However, such compositions should be
viewed with some caution, particularly in the case of the
Tamazert complex, where the primary carbonatite com-
positions have wundergone extensive and pervasive
late-stage sub-solidus mineralogical and chemical changes.

Calciocarbonatites  are  volumetrically  dominant
(¢. 50 vol. %) and the most widespread, occurring in the
Issali-Igban, Tisslit and Tamazzart areas (Fig. 1). Most of
the dikes are <1 to 2m wide, striking NNE-SSW, east—
west and NNW-SSE and >100m in length along strike.
The carbonatitic dikes exhibit evidence of tectonic effects
as indicated by the alignment of rock-forming minerals,
kinked twin boundaries, curved cleavage and wavy extinc-
tion of carbonate phenocrysts.

In thin section, the calciocarbonatites show magmatic
to blastic and porphyroblastic textures (Fig. 2). They
are commonly fine- (alvikites), medium- (microsovites),
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Table 3: Major and trace element composition of lamazert carbonatites, determined by XREF and ICP-MS

Carbonatite type: Calciocarbonatites

Sample no.: Tz Cal Tz Cab Tz Cad Tz Ca7 Tz Ca3 Tz Ca8 Tz Cab
Locality: Tamazzart Tamazzart Tamazzart Tamazzart Tamazzart Tamazzart Tamazzart
Longitude (W): 4°42'56" 4°41'47" 4°41'27" 4°41'33" 4°42'50" 4° 42'16" 4°41'28"
Latitude (N): 32°32'3” 32°3229” 32°32'27" 32°32'15" 32°32'6” 32°31'57” 32°32

Major elements (wt %)

SiO, 125 1-26 124 1-33 6-83 129 3-62
TiO, 0-01 0-01 0-01 0-01 0-01 0-01 0-11
Al,O3 0-02 0-02 0-01 0-04 0-84 0-02 0-38
FeOt 0-37 0-55 0-35 053 0-46 0-81 322
MnO 1-08 1-05 0-54 0-98 0-78 3-06 2:28
MgO 0-42 0-71 0-38 0-56 0-36 0-59 0-56
CaO 54-54 53:70 53-36 52-31 50-28 56-37 47-39
Na,O 0-01 0-01 0-01 0-02 0-01 0-01 0-03
Ko0 0-00 0-00 0-00 0-02 114 0-01 0-48
P,0s 0-02 0-06 0-15 0-11 0-02 0-03 119
H,0 0-11 0-07 0-08 010 0-07 0-09 0-25
CO, 4240 4285 43-25 4322 39-06 43-18 38:05
Total 100-20 100-3 994 992 99-9 1055 97-60
Trace elements (ppm)

Li 0-32 b.d. b.d. 0-33 b.d. 0-67 278
\% 172 1171 418 109 443 6-96 69-8
Cr 0-18 0-28 0-11 0-27 0-25 0-28 2-80
Co 0-01 0-06 0-02 0-04 017 0-04 0-94
Ni 0-02 014 0-30 0-04 0-10 0-12 048
Zn 10-3 342 156 23420 189 200 449
Ga 0-06 0-02 b.d. 0-13 0-69 0-05 164
Rb 0-09 b.d. b.d. 0-43 215 0-20 9-08
Sr 15968 21378 20362 27601 12017 26792 36260

Y 136 128 72:00 972 185 223 173

Zr 0-92 0-83 134 194 0-87 0-84 13-44
Nb 0-96 2:43 44-4 85-3 0-41 194 915
Cs 0-01 b.d. b.d. 0-01 b.d. b.d. b.d.
Ba 2225 2814 1396 1864 3337 3217 1939

La 983 669 584 459 889 412 3178
Ce 1511 1045 807 679 1342 703 3787

Pr 137 94-0 675 61-0 125 66-9 295
Nd 435 300 196 198 409 217 783
Sm 54-6 430 24-3 287 772 316 809
Eu 155 127 7-07 829 25-4 10-0 22-7
Gd 40.0 332 175 218 637 284 56-0
Tb 521 4-47 2:38 3:04 861 512 6:79
Dy 29-9 255 13-3 182 44-3 371 370
Ho 5-38 4-84 2:57 362 7-21 821 6-90
Er 14-6 141 7-21 10-4 17-2 26-1 20-4
Tm 1-19 212 1-05 1-54 2:36 397 2:92
Yb 11-4 134 661 9-88 14-4 260 187
Lu 1-65 1-87 0-90 1-36 191 363 2:564
Hf 0-28 0-25 016 0-23 0-40 0-31 094
Ta 0-05 0-05 0-06 0-21 0-07 0-08 2:46
Pb 20-2 271 179 22:2 119 281 64-0
Th 5-81 11-3 2:46 9-35 61-3 205 255
U 2-87 2:47 2:57 4-56 316 0-56 813

(continued)
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TAMAZERT CONTINENTAL CARBONATITES

Carbonatite type:

Calciocarbonatites

Sample no.: Is Cal Is Ca2 Is Ca3 Ts Cal CMeT CMeA
Locality: Issali Igban Issali Igban Issali Igban Tisslit Tisslit Achakhchakh
Longitude (W): 4°40'20" 4°40'8" 4°40'12" 4°39'3" 4°39'35” 4°39'15”
Latitude (N): 32°33'33” 32°33'33” 32°33/38” 32°339” 32°32'40” 32°34'40"
Major elements (wt %)
SiO, 1-96 1-36 1-44 221 1-34 13
TiO, 0-01 0-01 0-01 0-00 0-00 0-01
Al,03 0-02 0-03 0-04 0-02 0-02 0-02
FeOr 016 0-07 0-13 0-18 0-13 0-23
MnO 018 014 0-14 0-15 0-21 0-10
MgO 0-31 0-63 079 0-30 0-32 0-30
Ca0 536 55-9 55-8 53-2 56-6 51-4
Na,O 0-02 0-01 0-02 0-01 0-01 0-02
K,0 0-00 0-02 0-03 0-00 0-00 0-01
P,05 0-02 0-05 0-05 0-03 0-002 0-02
H,0 013 0-16 0-13 0-15 0-04 0-11
CO, 434 44-0 44-3 428 44-3 435
Total 99-8 102-4 1029 991 103-0 97-0
Trace elements (ppm)
Li b.d. 0-37 97-8 b.d. 0-27 0-07
\% 1-97 6-37 117 360 0-38 625
Cr 0-05 2:38 210 0-22 024 0-40
Co 0-02 0-08 0-10 0-02 0-51 0-06
Ni 0-59 092 0-70 0-12 0-70 0-04
Zn 163 159-8 791 114 727 10-3
Ga 0-02 0-24 0-20 0-02 0-09 0-09
Rb 0-00 0-69 0-68 0-00 0-07 021
Sr 14392 1132 1153 12874 2855 27091
Y 119 2:81 6-00 975 075 7:10
Zr 112 311 4-40 2:03 0567 371
Nb 0-45 093 0-96 0-43 0-14 0-36
Cs b.d. 0-03 0-01 b.d. 0-01 001
Ba 1180 9-10 836 1182 186 1032
La 143 874 2:65 113 232 150
Ce 127 822 2:43 102 187 180
Pr 879 053 0-20 725 10-6 14-2
Nd 22'5 1-38 0-74 19-0 234 40-9
Sm 219 0-18 0-16 207 0-98 3:60
Eu 0-65 0-06 0-06 0-55 0-23 0-88
Gd 152 0-21 0-27 1-36 0-32 255
Tb 0-20 0-03 0-07 017 0-03 0-23
Dy 1-39 0-25 0-64 116 0-13 1-10
Ho 0-32 0-07 018 027 0-02 0-20
Er 11 0-24 0-69 0-86 0-05 0-56
Tm 017 0-04 0-13 0-13 0-01 0-08
Yb 113 0-26 094 0-86 0-04 0-53
Lu 018 0-04 0-16 0-13 0-01 0-08
Hf 0-03 0-07 0-09 0-04 0-03 0-09
Ta 0-02 0-03 0-04 0-02 0-02 0-03
Pb 581 10-39 1071 475 2:56 804
Th 170 112 122 1-36 0-01 094
U 0-30 0-75 0-82 0-31 0-03 0-27
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Carbonatite type: Magnesiocarbonatites Silicocarbonatites
Sample no.: Is Mg2 Is Mg1 Is Si1 Is Si2 Ts Si
Locality: Issali Igban Issali Igban Issali Igban Issali Igban Tisslit
Longitude (W): 4°40'20” 4°40'20" 4°40'12" 4°40'23" 4°39'3"
Latitude (N): 32°33'50” 32°34'6" 32°34'12” 32°33'40” 32°33
Major elements (wt %)
SiO, 1-46 561 19-24 254 3079
TiO, 0-04 0-05 173 1-92 1-41
Al,03 0-06 0-04 2:95 1-93 5-47
FeOr 518 308 692 6-89 6-26
MnO 0-84 178 072 0-64 0-36
MgO 186 183 778 8:99 652
CaO 329 304 24-4 184 15-4
Na,O 0-03 0-11 0-12 0-05 0-13
K0 0-01 0-01 395 0-50 5-40
P,0s 0-24 0-04 143 2:99 0-69
H,0 0-24 0-37 0-29 1-35 07
CO, 454 422 26-4 260 199
Total 105-0 102:0 960 950 930
Trace elements (ppm)
Li 116 10-4 974 127 4-02
\Y 484 1485 1134 290 247
Cr 916 4614 184 392 173
Co 375 1-94 22'5 281 216
Ni 304 17 783 142 93-6
Zn 360 10-3 254 278 3010
Ga 028 019 941 8:03 197
Rb 015 0-36 455 9-59 116-4
Sr 1088 5363 1962 17017 2184
Y 98-3 234 565 687 39-2
Zr 373 54-2 325 238 356
Nb 9-65 4-03 293 372 237
Cs 0-00 0-01 0-05 0-13 041
Ba 3987 460 3313 2746 1685
La 527 3412 600 716 324
Ce 637 2917 718 1099 487
Pr 536 179 586 106 466
Nd 161 399 17 342 151
Sm 225 315 200 414 20-6
Eu 7-86 778 5-87 111 592
Gd 228 16-2 144 257 144
Tb 342 147 1-88 2:99 173
Dy 1956 5-87 107 157 926
Ho 339 0-89 1-87 259 1-45
Er 106 335 594 671 4-06
Tm 176 0-57 0-95 0-81 046
Yb 135 478 7:70 456 2:82
Lu 2:20 0-86 1-30 0-60 0-37
Hf 0-19 0-65 118 6-46 635
Ta 0-07 001 369 512 n.d.
Pb 379 44-3 431 521 n.d.
Th 136 64-3 29-9 62:1 n.d.
U 356 10-8 246 448 n.d.

*n.d., not determined.
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to coarse-grained (sovites), essentially composed of calcite
(80-90%), with wvariable amounts of fluorapatite
(10-20%), pyrochlore (5-10%), and titanite (up to 10%)
accompanied by minor green phlogopite (<800 pm), dolo-
mite, ankerite, albite, K-feldspar and quartz (Fig. 2). The
proportion of non-carbonate minerals, usually forming
fine-grained interstitial intergrowths with carbonates,
varies greatly among the veins and within single bodies.
Calcite
~0-2-0-4 mm across, locally with a few calcite phenocrysts
containing inclusions of celestine (up to 40 um in length),
bastnisite-(Ce) (up to 20 um across) and strontianite
(<10 pm across). Coarse calcite grains, commonly up to
7 mm long and polysynthetically twinned, are highly inter-
locked, producing a mosaic texture with triple junctions,
indicating equilibration under sub-solidus conditions.
Where bordered by fine-grained calcite, the large calcite
crystals invariably have serrated margins. Fluorapatite is
abundant (locally up to 20 modal %) and forms round,

occurs as euhedral to anhedral grains

elongated, purplish-blue cathodoluminescence colored
grains and prisms (up to 0-4 and 10 mm), commonly poi-
kilitically enclosed by either calcite or silicate phases
(Fig. 2).
Tamazzart area (western Tamazert) calciocarbonatites
and occurs either as small homogeneous grains included

Pyrochlore is exclusively restricted to the

in calcite-host minerals or as large zoned light green to
brown flaky crystals exhibiting alternating bands of differ-
ent colors (Fig. 2). Cores of crystals are commonly dark
and mantled by thin colorless zones, which in turn are
surrounded by thick yellow margins. In contrast to pyro-
chlore, titanite occurs exclusively within the calciocarbo-
natites of the Issali-Ighan and Tisslit areas (eastern
Tamazert) as euhedral crystals up to several centimeters
long (Fig. 2). Phlogopite forms subhedral homogeneous
microphenocrysts to euhedral large zoned crystals up to
lcm in diameter (Fig. 2).

Magnesiocarbonatites are restricted to the Issali-Ighan
and Tisslit areas (Fig. 1), where they crop out both as intru-
sive and extrusive bodies (diatremes). Intrusive magnesio-
carbonatites occur either as meter-sized plugs or NW—
SE-trending subvertical, 1-3 m thick, <100 m length along
strike, dykes cutting across the nepheline syenites, the cal-
ciocarbonatites, and the diatreme structures. Altogether,
magnesiocarbonatite make up
¢. 20% of the Tamazert carbonatite’s volume.

intrusive occurrences

In thin section, intrusive magnesiocarbonatites (befor-
sites) exhibit fine- (<50 pm) to medium-grained (I1-5 mm)
massive textures. They consist of >50% dolomite, up to
10% calcite and phlogopite.
untwinned, forms large cuhedral to subhedral crystals
with straight boundaries and frequent triple-junction inter-
sections similar to those described in carbonatites else-

Dolomite, commonly

where (Le Bas & Srivastava, 1989). No signs of corrosion
of the euhedral calcite rhombs were noted. Some calcite
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phenocrysts have apparent ‘overgrowths’ of dolomite.
These textural relationships are not consistent with re-
placement but are reminiscent of the phenocryst—ground-
mass relationships common in silicate igneous rocks
(Harmer & Gittins, 1997). Euhedral to subhedral phlogo-
pite shows frequent embayment. Non-carbonate constitu-
ents are apatite, magnetite and amphibole. They account
for 1-5% of the rocks, are not uniformly distributed and
usually form fine-grained interstitial intergrowths with
carbonate.

Explosive  magnesiocarbonatites
within the Issali-Ighan and Tisslit areas as steeply dipping
diatreme structures filled with pyroclastic materials

occur  exclusively

(including blocks of calciocarbonatite and remanent dykes
of magnesiocarbonatite) and country rock xenoliths. The
pyroclastic rocks consist of polymict tuffs, ash tuffs, lapilli
tuffs and tuffisites (Stoppa & Lupini, 1993; Mourtada,
1997), accompanied by polygenetic volcaniclastic breccias.
The lithic fragments include clasts of the surrounding
country rocks (marble, pyroxenites, lamprophyres, foid-
syenites and sedimentary carbonate wall-rocks). In thin
section, representative extrusive magnesiocarbonatite sam-
ples show megascopic breccia-like textures, consisting of
crust and mantle fragments accompanied by poorly
sorted globular lapilli set in a brown-weathered, fine-
grained groundmass
Compound lapilli are abundant, containing aggregates of
up to 1’5 mm in diameter spherical globules cemented by
drusy calcite or supported by an ash iron-rich dolomitic

mosaic of ferroan dolomite.

matrix. Globules consist of iron-bearing dolomite with
small amounts of biotite. In some compound lapilli, there
are concentric zones of more carbonate-rich material
(beforsite) grading outward to a feldspar and oxide-rich
cortex (Mourtada, 1997). Single dolomite crystals are
rimmed by Fe-rich carbonate overgrowths. Primary tex-
tures are not well preserved and all of the diatreme-type
structures have undergone significant chemical changes
during a period of hydrothermal alteration.

Mineralogically, the extrusive magnesiocarbonatites
consist of >70% Fe-rich dolomite grains and laths
(100-300 pm)  accompanied by  microphenocrysts
(950-150 um) of fluorapatite and phlogopite. Interstices
may be filled with late-stage hydrothermal quartz, albite,
K-feldspar, barite, strontianite, purple fluorite, and/or
REE-bearing fluorocarbonates (parisite-synchisite) and
sulfides (pyrite, sphalerite and galena).

Silicocarbonatites are most commonly associated with
occurrences of magnesiocarbonatite, although some are
related to melteigite rocks and occur as white, coarse-
grained intercumulus-textured calcite, filling the inter-
stices between clinopyroxene (250-800 um), schorlomite
garnet (up to Imm) and phlogopite (up to 3cm) (Fig. 2).
Silicocarbonatites contain mostly ankerite and ferroan-
dolomite with minor calcite and dolomite. Biotite is also
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present, reflecting a higher Fe content. Apatite forms
stubby grains, commonly poikilitically enclosed by either
calcite or silicate phases. Other accessory phases include
fluorite, barite and sulfides.

Mineral chemistry

Microprobe analyses show that the Tamazert carbonate
compositions vary from pure calcite to dolomite to ankeri-
tic dolomite and ultimately ankerite. Regardless of grain
size, calcite has a Sr content (0-3-0-9wt % SrCOs3) com-
parable with that of carbonatites worldwide (SrO =0-2—
14wt %; Hornig-Kjarsgaard, 1998). The average contents
of FeCOj3 MgCOs3; MnOj; and BaO are relatively low,
varying in the range of 0-2-1wt %, 01-02wt %,
0-1-2wt %, and 0-0-1wt %, respectively (Table 2).

CaO and FeO are also major components in dolomite,
reflecting a large range in Ca/(Ca+ Mg+ Te) ratios;
minor elements such as SrO and MnO also show a wide
variation (Table 2). Ankerite yields CaCOs; FeCOs,
MgCO3 and MnOj values in the range of 48-:5-52 wt %,
16:3-24-7 wt %, 23-4-29-1wt % and 1549 wt %, respect-
ively. The contents of Ba(CO3) are very low. All the ana-
lyzed carbonate minerals have very low LayOj; and
CeyOy contents, mostly below detection limits (Table 2).
The application of the dolomite—calcite geothermometer
of Anovitz & Essene (1987) indicated that the Tamazert
carbonate rocks equilibrated at various temperatures, ran-
ging from 430—700°C for sévites to 254—279°C for alvikites
(Mourtada, 1997).

Apatite shows little variation in chemistry and
approaches the idealized formula Ca;(POy)s(F, OH, CI).
Compositionally, apatite is characterized by LREE
enrichment () _LREE,O;=0-05-116wt %, with
CeyO3>LaygO5) and low Mn (<0-04wt % respective
oxides), and corresponds to fluorapatite with F concentra-
tions ranging from 4-2 to 7-5 wt %, similar to apatite crys-
tals occurring worldwide in carbonatites (Hogarth, 1989).
The NayO content is about 0-5wt % indicating the usual
coupled REE-Na substitution. Representative compos-
itions of apatite are listed in Table 2. Compared with the
composition of apatite from the calciocarbonatites of
the Issali-Igban and Tisslit areas, apatite crystals in the
Tamazzart calciocarbonatites are enriched in F (average
554wt % against 4-75 wt %), and particularly in CeyOs3
(average 0-47 wt % against 0-09 wt %) and are relatively
depleted in CaO (33 wt % against 54-5 wt %).

Pyrochlore displays a composition close to the theoretic-
al formula (Ca, Na)o(Nb, Ti, Ta),O6(OH, F, O) (Table 2).
The analyzed crystals are relatively Ca-rich (rather than
Na-rich) and Ca contents tend to decrease from the core
(154163 wt %) to the edge (14-2-15 wt %) of the crystals.
The small homogeneous pyrochlore grains are
LREE-rich (D LayOs3+ CeyOs+ NdyO3=787-45 ppm).
NayO scatters between 31 and 74wt %, ZrOy between
0-3 and 17wt %, and F between 2:3 and 53wt %
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(Table 2). In general, the pyrochlore has high Nb concen-
trations (57-63:5wt % NbyOs), partly replaced on site B
by Ti (6-7-3 wt % TiOy) and Ta (0-0-2 wt % TayOs).

Titanite displays uniform compositions with SiO,, TiOo,
CaO and FeO contents in the range of 30:1-30-7 wt %,
34-3-34-8 wt %, 27-6-27-9wt %, and 1-8-19wt %; re-
spectively (Table 2).

Phlogopite covers a somewhat wider range of compos-
itions, with Si0y, MgO, TiOy, FeO and F concentra-
tions in the range of 38-43-7wt %, 14-8-25-4wt %,
02-278wt %, 3:51-16:5wt % and 0-21-6-83wt %;
respectively. The KoO contents are relatively uniform,
varying in a restricted interval from 914 to 10-6 wt %,
whereas the BaO contents are very low (<0-2wt %).
Based on its thin-section pleochroic colour, two types of
phlogopite are recognized, varying from reddish brown to
green. They are also distinguishable by their compositions:
ferriphlogopite and green fluorphlogopite (Table 2).
Fluorphlogopite, characterized by its I content averaging
547wt %, occurs in the calciocarbonatites of the Issali
Ighban area, whereas ferriphlogopite, more depleted in F
with concentrations averaging 0-97 wt %, is limited to the
Tisslit and Oued Tamazzart areas (Fig. 1).

Locally, feldspars constitute a modally significant con-
stituent of the Tamazert calciocarbonatites (Table 2),
albite (An < 2) and two-feldspar intergrowths.

GEOCHEMISTRY

Whole-rock major and trace element
compositions

As expected from their mineralogy, the major element
geochemistry of the carbonatites shows a large range in
CaO (2-57wt %), MgO (0-1-19wt %) and SiOg
(12-30-8 wt %) contents, allowing the classification of the
Tamazert carbonatites into three groups (Fig. 3): (1) calcio-
carbonatites with CaO>47wt %, MgO<lwt % and
Si0y <7 wt % (sovites, microsovites and alvikites depend-
ing on their grain-size); (2) magnesiocarbonatites with
CaO<35wt %, MgO>18wt % and SiOy<7wt %
(beforsites and tuffisites); (3) silicocarbonatites with
CaO<25wt %, MgO<10wt % and SiOy>19wt %,
and Fe,O3 and Al,Ojs contents in the range of
0-2-7-7wt % and 0-3-5-5wt %, respectively. Compared
with calciocarbonatites, magnesiocarbonatites are slightly
enriched in FeyOg5 (3-42-5-73 wt %; average 0-9 wt % and
0-2-3-58 wt %; average 4:6wt %). The compositions of
the calcio- and magnesiocarbonatites are comparable
with those reported previously (Agchmi, 1984; Mourtada,
1997). The silicocarbonatites have the highest FeoO3 and
Al,O5 contents, reflected in the presence of ferroan-
dolomite and ferroan-calcite. The silicocarbonatites are
not true carbonatites as their carbonate contents are too
low (e.g. <50 modal %) (Le Maitre, 2002), but the term
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Fig. 3. Major clement composition of the calcio-, magnesio- and silicocarbonatites from Tamazert and a calciocarbonatite xenolith from the
nearby Taourirt area (xenolith in lamprophyre), as well as the oceanic Cape Verde and Canary (Fuerteventura) Islands. Data sources: carbona-
tite xenolith from Taourirt from Wagner ¢f al. (2003); carbonatites from the Cape Verde and Canary Archipelagos from Hoernle & Tilton

(1991) and Hoernle et al. (2002).

‘silicocarbonatites’ is used below for convenience. Based on
thin-section petrography, the high SiO, content of the sili-
cocarbonatites is secondary in origin as a result of the
abundance of K-feldspar and hydrothermal quartz along
with biotite, barite, strontianite, fluorite and sulfides.

The carbonatites show large variations in the abun-
dances of most trace elements (Fig. 4, Table 3). Large ion
lithophile elements (LILE), such as Cs, Rb, Ba, K, Pb, Sr
and Li, REE and high field strength elements (HFSE),
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such as the Nb, Ta, Ti, Zr and Hf, range from well below
primitive mantle values to values >4000 times above
(Fig. 4). The HFSE contents of the magnesiocarbonatites
are similar to those of the calciocarbonatites and their dis-
tribution shows no evolutionary trend as outlined by
Chakhmouradian (2006). The Sr concentrations of the cal-
ciocarbonatites are extremely high (1131-36 260 ppm),
overlapping those of magnesio- and silicocarbonatites
(1088-17017 ppm). La concentrations range from 27 to
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Fig. 4. Multi-clement diagrams showing primitive mantle-normalized trace clement concentrations of Tamazert low-*’Sr/**Sr (a) and
high-¥Sr/*Sr (b) calciocarbonatites and Tamazert magnesio- (c) and silicocarbonatites (d), compared with calcio- and magnesiocarbonatites
from the Cape Verde and Canary Islands. Data sources: Cape Verde and Canary Islands carbonatites from Hoernle & Tilton (1991) and
Hoernle ¢t al. (2002); primitive mantle from Sun & McDonough (1989).

3+4 ppm. Cr and Ni concentrations are very low and close
to the detection limits of both X-ray fluorescence (XRF)
and ICP-MS for the calciocarbonatites (<2-4 ppm), moder-
ate for the magnesiocarbonatites (2:7-46-2 ppm) and ele-
vated for the silicocarbonatites (170-393 ppm). The
carbonatites also show large ranges in the ratios of trace
elements, which are similar to those found in relatively
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primitive basaltic liquids, such as Ba/Th (7-1680), U/Th
(0-3-38-3), Nb/Ta (5-752), K/La (0-109), La/Yb (3-5400),
Pb/Nd (0-03-14-33), Sr/Nd (7-0-16) and Zr/Hf (2-84).
The large variation in highly incompatible element con-
centrations and trace element ratios reflects the presence
of exotic mineral phases that carry large amounts of these
generally incompatible elements, such as pyrochlore
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Fig. 4. Continued.

(HFSE and LREE), titanite ('Ti and other HFSE), apatite
(LREE, Sr, U, Th) and biotite (K, Rb). Two of the eastern
Tamazert calciocarbonatites (samples ISCa2 and IsCa3)
have very low LREE and HFSE and very high Pb/Nd
ratios (up to 14-5), which could in part be explained by
the fractionation of pyrochlore.

The primitive mantle-normalized incompatible element
patterns of the Tamazert carbonatites generally show
troughs at K, P, Zr, Hf, Ti, Li, Ta and Nb coupled with
relative enrichment of Sr, Th, U, Pb and the LREE.
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Most calciocarbonatites show incompatible element pat-
terns very similar to those of calciocarbonatites from the
Canary and Cape Verde Islands (Hoernle & Tilton, 1991;
Hoernle et al., 2002) (Fig 4a and b). The six calciocarbona-
tites from the eastern Tamazert complex (Tisslit and
Issali-Igban areas) have lower REE concentrations, includ-
ing three samples from calciocarbonatites intruding
Jurassic limestones, than the western Tamazert calciocar-
bonatites from Tamazzart (Fig. 4a and b). The limestone-
hosted calciocarbonatites are also distinguished by their
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low Sr and Ba concentrations, reduced or lacking negative
P-; Zr-, Hf- and Li-anomalies and a relative enrichment
of the LREE and HREE compared with the middle REE
(MREE) in two samples, resulting in U-shaped REE pat-
terns. The magnesiocarbonatites have much higher Th
and much lower Sr than the calciocarbonatites. V, Cr, Co
and Ni are also higher in the magnesiocarbonatites.
Moreover, the REE and trace element patterns of the
magnesiocarbonatites are similar to those of magnesio-
carbonatites from the Cape Verde Islands (Fig. 4c).
Mantle-normalized incompatible element patterns for the
silicocarbonatites are similar to those of the calcio- and
magnesiocarbonatites, with the exception of reduced or
lacking negative HFSE, K and Li anomalies (Fig. 4d).

C-O isotopic compositions

The C and O isotope data for various types of carbonatites
from the Tamazert complex are summarized in Table 4
and plotted in Fig. 5a. Altogether, the analyzed carbonatite
samples display large variations in 8”C and §'°0, ranging
from —5-8 to +17%o, and +6-9 to +23:5%o, respectively.
The most striking feature is that there are significant vari-
ations in the 8”C and 8O values depending both on the
carbonatite type (calcio-, magnesio- and silicocarbona-
tites) and the petrographic composition of the host-rock.
Calciocarbonatites cutting across nepheline syenites (s./)
tend to have the lowest 8”C (~5:8 to —3:9%0) and &8O
(6:9-9:0%0) and plot within or close to the ‘primary igne-
ous carbonate’ mantle box of Taylor et al. (1967), Deines &
Gold (1973) and Keller & Hoefs (1995). In contrast, calcio-
carbonatites cross-cutting the Liassic limestones (e.g. sam-
ples IsCal and IsCa3) have the highest 8”C and 8O (up
to +17%o and 423-5%o, respectively). The magnesio- and
silicocarbonatites commonly have higher 8”C (-1 to
—0:3%0 and —2:3 to —16%o) and 8O (+13-8 to + 17:4%o
and +10°1 to 4 12:6%o) values than most of the calciocarbo-
natites. In the C-O isotope diagram (Fig. 5a), the
Tamazert carbonatites form an array between the mantle
box and marine sediments.

Sr—Nd—Pb isotopic composition

Initial Sr—Nd—Pb isotope ratios were calculated using an
average formation age of 40 Ma inferred from the avail-
able K—Ar and Rb/Sr systematics (Tisserant et al., 1976).
The whole-rock isotopic analyses of the carbonatites yield
a restricted range in "“Nd/"*Nd values varying between
0-51254 and 0-51282, but show a wider range in *Sr/*®Sr
ratios (0-7031-0-7076), similar to the published data for
three carbonatite samples from Tamazert and the Taourirt
area ¢ 300km NE of the Tamazert complex
(Bernard-Griffiths et al., 1991; Wagner et al., 2003). Most
Tamazert carbonatites form an array together with those
from the Canary and Cape Verde Islands, but trend to-
wards lower "Nd/"*Nd (Fig. 5b). The Tamazert calciocar-
bonatites can be divided into two groups based on their Sr
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and Nd isotopic compositions: (1) calciocarbonatites
with relatively low #Sr/*®Sr  (<0-7040) but elevated
MINA/MNA (>0-5127) that fall on the Canary—Cape Verde
array; (2) those with high ¥Sr/*Sr (>0-7040) and low
"Nd/MNd (<0-5127) that do not fall on the Canary—
Cape Verde array. Notably, the high-*’Sr/*Sr calciocarbo-
natites intruded into Liassic limestones. Two of these
samples also have the highest 8 C and 8O of all carbona-
tites (Fig. 5a). Sr and Nd isotope ratios of the magnesio-
and silicocarbonatites are nearly indistinguishable from
those of the low-"Sr/*®Sr calciocarbonatites, except that
the silicocarbonatites extend to slightly higher Nd isotope
ratios, and they overlap the field of the Cape Verde calcio-
carbonatites (Fig. 5b).

The initial Pb isotope ratios of the analyzed carbonatites
show significant variations: “*°Pb/**Ph =18:29-19-89,
27Ph P Ph =15-56-15-64 and ***Pb/***Pb = 38-24-39-55.
The calciocarbonatites from western Tamazert have lower
297ph/**Ph isotope ratios than calciocarbonatite samples
from eastern Tamazert. On the uranogenic Pb isotope dia-
gram (Fig. 6a), the low-""Sr/*Sr calciocarbonatites from
western and eastern Tamazert plot along the Northern
Hemisphere Reference Line (NHRL). In contrast, the
high-#’Sr/*Sr calciocarbonatites from eastern Tamazert
plot above (to the left of) the NHRL on the urano- and
thorogenic Pb isotope diagrams and form an array to-
wards a low-""°Pb/***Pb component with positive A74
and A8/4. The magnesio- and silicocarbonatites have
slightly higher *°Pb/***Pb ratios than the calciocarbona-
tites, which is the opposite of what is observed for calcio-
and magnesiocarbonatites from the Cape Verde Islands
(Fig. 6) (Hoernle et al. 2002). The Tamazert magnesio- and
silicocarbonatites fall below the NHRL on both Pb isotope
diagrams and overlap the field for the Cape Verde calcio-
carbonatites on the uranogenic Pb isotope diagram; they
fall between the Cape Verde and Canary calciocarbona-
tites on the thorogenic Pb isotope diagram. In summary,
despite their high C and O isotope values, the magnesio-
and silicocarbonatites have Sr—Nd—Pb isotope ratios simi-
lar to the Cape Verde and Canary calciocarbonatites,
which in turn have mantle-type C and O isotope values.

DISCUSSION

Late-stage sub-solidus and crustal
processes

Because field and thin-section observations indicate that
the Tamazert carbonatites have fenitized the surrounding
silicate rocks, the primary carbonatite magma is likely to
have been alkaline, consistent with experimental data
(Wallace & Green, 1988; Sweeney, 1994; Yaxley & Green,
1996). Keppler (2003) showed that the decrease at low pres-
sures of water solubility in carbonatitic melts results in
the expulsion of fluids and thus hydrothermal alteration
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(2002); mantle and marine sediment boxes for carbonatites from Taylor e al. (1967) and Keller & Hoefs (1995); HIMU, BSE and CHUR from

Zindler & Hart (1986).

(e.g. fenitization) of the surrounding wall-rocks. The effects
of such alteration are much stronger around shallow car-
bonatite complexes, as a result of the greater amount of hy-
drous fluid expulsion, than around deep intrusions. An
estimated depth of <3km for the emplacement of the
Tamazert intrusion 1is consistent with the strong
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fenitization observed around the intrusive complex (Salvi
et al., 2000; Marks et al., 2008). In addition to the develop-
ment of fenites, the Tamazert carbonatites experienced the
effects of an extensive late- to post-magmatic alteration
event, as shown by the development of the widespread
hydrothermal mineral paragenesis of fluorite, barite,
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Fig. 6. Pb isotopic composition of carbonatites from the continental Tamazert igneous complex and the oceanic Cape Verde and Canary
Islands. Data sources: Cape Verde and Canary Islands carbonatites from Hoernle & Tilton (1991) and Hoernle et al. (2002); Northern
Hemisphere Reference Line (NHRL) from Hart (1984). (a) *"Pb/***Ph; vs 2°°Pb/***Phy; (b) 2**Pb/***Ph; vs 22°Ph/***Ph;,

strontianite, celestine and REE carbonates within the car-
bonatites. The existence of fluorite suggests the involve-
ment of an F-rich hydrothermal fluid derived from the
carbonatite itself. Carbonatites also release fluids rich in
Ca, Sr, Mn, REE, HFSE and CO, (e.g. Woolley, 1982;
Platt & Woolley, 1990; Biihn, 2008; Schilling et al., 2009);
these appear to have affected both the surrounding
host-rocks and parts of earlier emplaced carbonatites.
Although most of the calciocarbonatites show a relative-
ly restricted range in chemical composition, three of the
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analyzed samples have much more radiogenic *Sr/*°Sr
and less radiogenic "*Nd/"**Nd and **°Pb/***Pb isotopic
compositions than the other calciocarbonatites. It is com-
monly assumed that the Sr and Nd isotopic composition
of carbonatites cannot be changed by alteration processes,
as a result of their high Sr and Nd concentrations.
Interestingly, the three samples with anomalous radiogenic
isotopic compositions also have low Sr (1130-2860 ppm
compared with 12000-36 000 ppm for other calciocarbo-
natites) and Ba contents (9-84 ppm vs 1000-3400 ppm).
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et al. (2002).

Cathodoluminescence microscopy shows that some calcite
crystals have a Sr-rich core, mantled by a secondary
low-Sr rim, indicating that the low Sr concentrations are
not a primary but a late-stage feature of the carbonatites.
The lower 2°Pb/?**Pb and ***Pb/***Pb isotope ratios of
these three calciocarbonatite samples (Fig. 6) also suggest
a significant input of upper crustal Pb (Zartman & Doe,
1981) during ascent of the carbonatitic magma.

The three samples with anomalous Sr, Nd and Pb iso-
topic compositions also have elevated O and C isotopic
compositions compared with mantle values (Figs 5a and
7b—d). The elevated stable isotopic compositions can
result from: (1) crustal contamination involving assimila-
tion of sedimentary wall-rocks during magma emplace-
ment (Anderson, 1987); (2) high-temperature fractionation
within a carbonatite magma (Deines, 1989); (3) loss of iso-
topically light water during pressure reduction (Deines &
Gold, 1973); (4) equilibration of carbonates with meteoric
water (at a temperature of <250°C) (Coulson et al., 2003).
Because the radiogenic isotopes are also anomalous,
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crustal contamination is the most likely explanation for
the elevated O and C isotopic values.

Limestones have low Sr and Ba concentrations and high
8'®0 and 8"C values compared with mantle-derived car-
bonatite melts, radiogenic ¥’ Sr/*°Sr (reflecting that of sea-
water when the limestone formed), and Nd and Pb
isotopic compositions that are likely to reflect the compos-
ition of local Jurassic pelagic sediments (i.e. unradiogenic
NN and  2°Pb/***Ph, and *”Pb/***Pb and
28ph/2*Ph  well above the NHRL for a given
205ph /2 Ph). Therefore mixing of the Jurassic limestone
that hosts the Tamazert complex with the calciocarbonatite
magma could explain the anomalous composition of the
three calciocarbonaties. However, illustrated by the model
mixing curve in Fig. 5b, addition of more than 85% of the
host limestone to an average calciocarbonatite is necessary
to explain the extremely radiogenic Sr and unradiogenic
Nd isotopic composition of the three anomalous calciocar-
bonatites. Such large addition of limestone to the carbona-
tites is also consistent with the dilution of Sr and Ba
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concentrations in these samples roughly by a factor of 10.
The mantle-derived calciocarbonatite and/or related
mantle-derived silicate melts are likely to have caused
melting of the surrounding Jurassic carbonates and other
crustal rocks, which may included sulfides rich in Pb.
Mixing of the eastern Tamazert calciocarbonatite melts
with >85% of the secondary limestone melts could gener-
ate the trace element and stable and radiogenic isotopic
compositions observed in the low-Sr, high-*’Sr/**Sr calcio-
carbonatites from eastern Tamazert, consistent with the
emplacement of these melts into the
Alternatively, <15% addition of mantle-derived calciocar-
bonatite melt to the host limestone could also generate the
observed chemical compositions. This scenario, however,
is not consistent with the cross-cutting relationship be-

limestones.

tween the high-*’Sr/*®Sr calciocarbonatites and the host
limestone.

As noted above, regional differences in geochemistry
also exist between the calciocarbonatites. The calciocarbo-
natites from eastern Tamazert have lower REE, Y, Pb, U
and Th abundances and higher Pb isotope ratios than
those from western Tamazert, regardless of whether they
have O and C isotope compositions plotting in the mantle
range and low Sr concentrations and isotope ratios or ex-
tremely elevated O, C and Sr isotopic compositions
(Figs 4 and 6a). Although these regional variations in
trace element and isotopic composition do not correlate
with indices of alteration or crustal interaction (e.g. O, C
and Sr isotope ratios), extensive fractionation of phases
such as apatite and sulfides could, in part, explain the dif-
ferences in trace element composition compared with the
calciocarbonatites from western Tamazert. The difference
in Pb isotopic composition, however, cannot be explained
by fractional crystallization or variations in the degree of
melting, but must reflect differences in the composition of
the sources (crustal and mantle) contributing to the
sampled calciocarbonatites.

Magnesiocarbonatites, occurring mainly as porous
breccias and permeable diatremes, show extensive recrys-
tallization accompanied by the replacement of calcite
with secondary dolomite, and the development of a
secondary mineral paragenesis made of ankerite, fluorite,
pyrochlore, apatite, barite, strontianite, celestine, sulfides
and Fe-oxides. Replacement of calcite by dolomite,
triggered by MgO-rich hydrothermal fluids, can explain
the increase in MgO, §”C and §"O and decrease in CaO
and Sr observed in the magnesiocarbonatites (Figs 3
and 5a). The Tamazert magnesiocarbonatites have
trace element patterns similar to the high-REE calciocar-
bonatites from western Tamazert, except that Th is much
higher and Sr much lower. On the other hand, the Sr,
Nd, 2Pb/*™Pb and 2%Pb/***Pb isotope ratios of
the magnesiocarbonatites are similar to those of the

high-Sr  calciocarbonatites from western Tamazert,
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but their *Pb/***Pb ratios are slightly higher (Figs 5
and 6).

If the magnesiocarbonatites were ultimately produced
by the recrystallization of calciocarbonatites similar to
those from eastern Tamazert, the higher ***Ph/***Pb ratios
of the magnesiocarbonatites in comparison with the calcio-
carbonatites could result from one of the following pro-
cesses. (1) The dolomitic matrix was precipitated from
fluids having a relatively high ***Pb/***Pb isotope ratio
(e.g. derived from mafic and ultramafic igneous silicate
rocks or melts in the complex). (2) U loss or Pb gain
caused a decrease in the U/Pb ratio during the dolomitiza-
tion process that occurred millions of years after the par-
ental calciocarbonatites formed. This would have resulted
in an undercorrection for radiogenic ingrowth using the
measured U/Pb ratio. In other words, a higher U/Pb ratio
is needed to correct the sample for radiogenic ingrowth
during part of the time after its formation. (3) The Pb iso-
topic compositions reflect primary differences in the car-
bonatite magma sources.

If the basement silicate rocks providing the MgO for the
magnesiocarbonatites were derived from the same source
as the carbonatites, but had high U/Pb ratios, they could
have evolved more radiogenic “’°Pb/***Ph through time
without significantly affecting the other isotope systems.
The 2Pb/***Pb isotope ratios would not have been signifi-
cantly affected, because of the low abundance of *°U rela-
tive to "U (1/137-88) in the present-day Earth. The
298ph/2*Ph isotope ratios would also not have been af-
fected, because ®Pb is derived from the decay of **Th,
which has a significantly longer half-life than BEULIf
these silicate rocks also provided the Pb for the magnesio-
carbonaties, they could have caused an increase in
206ph/2%*Ph without affecting the other isotopic systems.
The lack of change in the Sr and Nd isotopic composition
could reflect the following: (1) the fluids causing the dolo-
mitization had low concentrations of Sr and Nd; (2) the
dolomite did not incorporate Sr or Nd from the fluids,
which is likely for Sr as it is less compatible in dolomite
than in calcite and the Sr concentrations are much lower
than in the calciocarbonatites, the presumed parents of
the magnesiocarbonatites; (3) the Sr and Nd isotopic com-
positions of the rocks or melts from which the Pb was
derived had similar Sr and Nd isotopic compositions.
Alternatively, a regional hydrothermal event occurring
millions of years after the emplacement of the calciocarbo-
natites that also caused the recrystallization of calciocar-
bonatites to magnesiocarbonatites (and possibly also the
silicocarbonatites; see below) could also have decreased
the U/Pb ratio. The magnesiocarbonatites, however, have
higher U/Pb ratios (0-09-0-24) (and silicocarbonatites:
U/Pb=0:09--57) than the spatially related eastern
calciocarbonatites  (0-01-0-08) and therefore this is
not a viable possibility. Interestingly, the Cape Verde
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magnesiocarbonatites also have distinct Pb isotopic com-
positions from the associated calciocarbonatites, but they
have less radiogenic rather than more radiogenic Pb iso-
topic compositions. Hoernle et al. (2002), on the basis of
the absence of a crustal endmember with an appropriate
isotopic composition, concluded that the isotopic compos-
ition of the Cape Verde magnesiocarbonatites reflected
that of their mantle source.

In summary, we interpret the geochemistry of the mag-
nesiocarbonatites to reflect interaction, at crustal levels,
with Mg-rich late-stage hydrous fluids that accompanied
the emplacement of the carbonatites. The Mg in the fluids
was certainly leached from mafic and ultramafic igneous
rocks that also crop out in the area and belong to the
Tamazert ijolite—syenite—carbonatite complex. The ele-
vated *°Pb/***Pb isotope ratios of the magnesiocarbona-
tites, as compared with the calciocarbonatites from
castern Tamazert, may have been derived from such mafic
and ultramafic igneous rocks or reflect a source
characteristic.

The silicocarbonatites have elevated SiOo, T1O9, AloOg,
(FeO),, MgO, K,O, P;O;, Ni, Co, Cr, V, Th and HFSE
and have lower CaO than the calcio- and magnesiocarbo-
natites (Figs 3 and 4), which could be explained by silifica-
tion of calciocarbonatites, similar to those from western
Tamazert with elevated incompatible element abundances,
by silica-rich hydrothermal fluids. This conclusion is sup-
ported by the elevated stable isotope ratios in the silicocar-
bonatites and the presence of secondary quartz and other
silicate phases in these samples. The stable isotope ratios,
however, are not as high as those observed in the magne-
siocarbonatites, making the magnesiocarbonatites an un-
likely parent for the silicocarbonatites, despite their
nearly identical radiogenic isotopic compositions. There
is, however, some question as to whether hydrothermal
{luids
Therefore as an alternative to silification through hydro-
thermal fluids, the silicocarbonatites may originally have
been mixtures of calciocarbonatite and silicic melts, as sili-

could cause the observed HFSE enrichment.

cic melts are enriched in the same major and trace elem-
ents as the silicocarbonatites. The elevated stable isotopic
compositions, however, suggest that some crustal inter-
action or recrystallization took place. The eastern calcio-
carbonatites that have not interacted with the Jurassic
limestones (those with high-Sr and low-Sr isotope ratios)
have similar Sr and Nd isotopic compositions to the mag-
nesio- and silicocarbonatites. The Pb isotope ratios are
also very similar, except that the magnesio- and silicocar-
bonatites have slightly higher ***Pb/***Pb isotope ratios.
The slightly elevated *°Ph/***Pb isotope ratios of the sili-
cocarbonatites compared with the eastern calciocarbona-
tites could be derived from silicate rocks in the complex,
similar to the magnesiocarbonatites. Alternatively,
these isotopic compositions may reflect those of the
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carbonatite sources. Excluding the high-¥Sr/*Sr isotope
eastern Tamazert calciocarbonatite samples, the remaining
carbonatites form positive arrays on Pb isotope diagrams
and a negative correlation on the *Pb/**Pb vs
"Nd/"*Nd isotope diagram, with the eastern Tamazert
calcio-, magnesio- and silicocarbonatites having more
radiogenic Pb and Nd isotope ratios than the western
Tamazert carbonatites. These geographical differences are
still present if only calciocarbonatites with mantle O and
C 1sotope ratios are considered, indicating a difference in
the mantle source composition of the carbonatites from
the different areas. The eastern Tamazert carbonatites are
derived from a higher time-integrated U/Pb (HIMU)-
type source and the western Tamazert carbonatites from a
more enriched mantle I (EMI)-type source, similar to
what has been proposed for the carbonatites in the Cape
Verde Islands.

Origin of carbonatite melts

Carbonatite petrogenesis remains the subject of consid-
erable debate. Various petrogenetic models have been
proposed, ranging from direct partial melting of a
carbonated peridotitic mantle source (Le Bas, 198l
Wyllie et al., 1996), through fractional crystallization
and/or liquid immiscibility of mantle-derived, COq-bear-
ing, nephelinitic or melilitic parental melts (Gittins,
1989; Bell, 1998; Halama et al., 2005), to intrusion-
induced anatexis of limestone through volatile fluxing
(Lentz, 1999) as recently reviewed by Woolley (2003) and
Mitchell (2005). The key features that may potentially
be used to distinguish primary carbonatitic melts from
those derived from differentiation of parental silicate
melts have been discussed by various workers (Bell, 1998;
Harmer & Gittins, 1998; Lee & Wyllie, 1998; Bell &
Rukhlov, 2004).

Petrological experiments suggest that primary carbona-
titic melts may be produced by very low-degree partial
melting of carbonated mafic or ultramafic lithologies
(eclogite or peridotite) between 21 and 31 GPa and 930
and 1080°C: (Wallace & Green, 1988; Bailey, 1993;
Sweeney, 1994; Yaxley & Green, 1996). Carbonatitic melts
produced by low-degree partial melting of carbonated
eclogite show a larger variation in CaO content (from
magnesio- to calciocarbonatites) than peridotite-derived
melts (Dalton & Wood, 1993; Hammouda, 2003; Dasgupta
et al., 2005), with residual near-solidus carbonatitic melt
becoming less calcic with increasing pressure (Dasgupta
& Hirschmann, 2007). The resulting melts are usually dolo-
mitic with CaO and MgO contents dependent on the
source composition and P—7 conditions of partial melting
(e.g. the stability of dolomite solid solution in the residue)
(Dalton & Wood, 1993; Dasgupta et al., 2004, 2005;
Gudfinnsson & Presnall, 2005; Dasgupta & Hirschmann,
2007; Brey et al., 2008), and may evolve towards calciocar-

bonatitic compositions through wall-rock interaction
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when migrating through peridotite (Dalton & Wood, 1993).
This observation could explain why the least altered
oceanic and continental carbonatites on the NW African
plate are calciocarbonatites (Hoernle & Tilton, 199];
Hoernle et al. 2002; this study). Accordingly, carbonatites
appear to be the end-products of the complex evolution of
primary mantle-derived liquids that may involve reactions
with mantle and/or crustal wall-rocks, crystal fractionation
and the loss of volatile and alkali-rich components
(Dalton & Wood, 1993; Harmer & Gittins, 1997; Bithn &
Rankin, 1999; Harmer, 1999; Nielson & Veksler, 2002).
Reconstructing these processes in the petrogenesis of the
Tamazert carbonatites is beyond the scope of this study.
Below we compare the Tamazert carbonatites with other
African carbonatites and with carbonatites and silicate ig-
neous rocks from the Canary and Cape Verde Islands to
gain additional insights into the mantle sources and origin
of these rocks.

Comparison of Tamazert with other
African carbonatites and NW African
silicate igneous rocks

Excluding  the
high-#Sr/*°Sr calciocarbonatites from eastern Tamazert,

crustally ~ contaminated  low-Sr,
the other Tamazert carbonatites form a near-vertical
array on a ¥’Sr/*Sr vs "Nd/"**Nd isotope diagram with
a slightly negative slope, a nearly horizontal array on a
200ph 2Pl vs #Sr/*Sr isotope diagram with slight nega-
tive slope, and positive arrays on “Pb/*™Pb vs
207204 Ph, 28Ph/**Ph and "*Nd/**Nd diagrams. These
arrays remain even if only samples with mantle O and C
isotopic compositions are considered. These arrays indicate
the presence of both HIMU- and EMI-type components
in the mantle source of the Tamazert carbonatites, similar
to what has been observed in the Cape Verde Islands
(Figs 5 and 7). The carbonatite data from Tamazert, the
Cape Verdes and Fuerteventura, Canary Islands, taken to-
gether fall along similar arrays to the Tamazert carbonatite
data, which holds true even if only calciocarbonatites with
mantle O and C isotopic compositions are considered.
The close similarity in carbonatite compositions between
the Cape Verdes, Canaries and Tamazert suggest a
common source(s) for these carbonatites. Although other
African carbonatites (from eastern and southern Africa)
also form arrays between HIMU- and EMI-type compo-
nents, their arrays are shifted to higher #Sr/*°Sr and
27Ph2*Ph and lower "PNd/"**Nd at a given **°Pb/***Pb
isotope ratio (Fig. 8). The EMI component involved in the
petrogenesis of Eastern Canary Island and southern Cape
Verde Island lavas was suggested to result from the involve-
ment of recycled African subcontinental lithosphere
(Hoernle & Tilton, 1991; Hoernle et al., 2002). It is also
likely that the weak EMI influence on the low-*Sr/*Sr,
low-A7/4Pb Tamazert

crustally  uncontaminated
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calciocarbonatites results from interaction with the under-
lying NW African lithospheric mantle.

Low-"Sr/%Sr, low-A7/4Pb igneous rocks from continen-
tal NW Africa such as the ¢. 42 Ma Tamazert carbonatites,
basanites from the Rekkame plateau (age corrected to 43
Ma) and Miocene and Quaternary Middle Atlas basanites
form a group together with the oceanic igneous rocks
from the Canary and Cape Verde Islands (Fig. 8). The
Tamazert, Rekkame, Atlas and Cape Verde igneous rocks
overlap with the Holocene Canary Island lavas in the Pb
isotope diagram (Fig. 8b). All these samples have relatively
low ¥’Sr/*®Sr (Fig. 8a), plot on or below the NHRL, and
stem from both continental and oceanic intraplate areas
of the NW African plate. Therefore, the similarity in the
Sr—Nd—Pb isotope ratios of these igneous rocks may point
to a common sublithospheric source.

Is there a mantle plume beneath

NW Africa?

The similarity of the geochemical and isotopic compos-
itions of both carbonatites and ocean island basalts
(OIBs) has led many researchers to argue that carbonatites
are associated with mantle upwellings and in many cases
with mantle plumes (Bell, 2001, and references therein).
For the origin of the NW African alkaline igneous prov-
inces, several variations of the plume model have been
proposed and recently revisited, including: (1) a long-lived
large mantle upwelling lasting since the Triassic (Oyarzan
et al., 1997; Anguita & Hernan, 2000); (2) a large-scale
sheet-like mantle upwelling emanating from the eastern
North Atlantic (Hoernle et al., 1995); (3) a small Cenozoic
asthenospheric plume similar to those observed in the
West European Alpine Foreland (Zeyen et al., 2003); (4) a
shallow mantle upwelling during middle to late Miocene
time, during a period of relative tectonic quiescence
(Missenard et al., 2006). The Tamazert carbonatites are
highly enriched in incompatible trace elements and have
isotope signatures similar to many OIBs worldwide. Based
on the trace element and C-O—-Sr—Nd isotopic compos-
ition of lamprophyres and two carbonatite samples from
Tamazert, it was suggested that the various rock-types of
the complex could have been derived from a mantle
plume (Bernard-Griffiths et al., 1991).

There is, however, geological and geophysical evidence
arguing against the presence of a deep-rooted mantle
plume beneath northwestern Africa. Magma supply rates
are low compared with hotspot areas associated with
mantle plumes rising from the core-mantle boundary as
observed in seismic tomography models (e.g. Canary
Islands, Cape Verdes and Azores) (Montelli et al., 2006).
The igneous activity in NW Africa is not continuous and
did not produce a line of volcanoes showing gradual age
progression, as observed, for example, for the Canary hot-
spot track (Iig. 1) (Geldmacher et al., 2005). Field relation-
ships show that the emplacement of the Tamazert complex
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Fig. 8. Sr—Nd-Pb isotopic composition of high-Sr, low-*"Sr/**Sr Tamazert calciocarbonatites compared with continental African carbonatites
(from East and South Africa) and other carbonatites and silicate lavas from the NW African plate such as oceanic carbonatites and mafic
lavas from the Cape Verde and Canary Islands and Atlas silicate mafic lavas (Rekkame, Middle Atlas). Most of the calciocarbonatites have
mantle O and C isotopic compositions. The magnesio- and silicocarbonaties from the Cape Verdes and Tamazert do not have mantle-like O
and C isotopic compositions but may reflect the Sr—Nd—Pb isotopic composition of their mantle sources. Data sources: East and South
African continental carbonatites from Nelson e/ al. (1988), Simonetti & Bell (1994), Paslick et al. (1995), Kalt et al. (1997), Harmer et al. (1998), Le
Roex & Lanyon (1998) and Bell & Tilton (2001); Cape Verde and Canary Islands carbonatites from Hoernle & Tilton (1991) and Hoernle ez al.
(2002); Rekkame basanites from Duggen et al. (2005); low A7/4Pb Middle Atlas basanites from Duggen et al. (2009); mantle endmembers

DMM, EMI and HIMU from Zindler & Hart (1986).

is structurally controlled (Mattauer et al., 1977; Kchit, 1990)
and that the emplacement of the carbonatitic magmas
took place in response to tectonic regime transition from
transpression to transtension at the Paleocene—Eocene
boundary as a result of a shift in eastward motion of the
African and European plates (see below). A similar model
has been proposed for the genesis of Himalayan carbona-
tites (Hou et al., 2006). Moreover, the Tamazert and other
NW African igneous rocks are not part of the Canary hot-
spot track, which is located on the oceanic side of the
African plate (Geldmacher et al., 2005; see Fig. 1). Recent
P- and S-wave seismic tomographic studies show that the
well-resolved seismic anomalies beneath the Canary
Islands do not extend beneath Africa at depths between
300 and 600km (Montelli et al., 2004, 2006), strongly
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arguing against a deep upwelling beneath NW Africa and
the Tamazert complex. A geochemical similarity, however,
exists between silicate and carbonatitic lavas from intra-
plate igneous areas both on the continental and oceanic
part of the NW African plate since the FEocene.
Regionally, Lustrino & Wilson (2007) concluded that
there is no need to invoke the involvement of a single or
multiple deep mantle plumes to explain the Cenozoic
circum-Mediterranean anorogenic magmatism.

Model for the origin of the Tamazert
carbonatites

Previous investigations have shown that the High Atlas
system resulted from the tectonic inversion of Late Triassic
to Early Liassic extensional basins, genetically related to
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the opening of the Tethyan and Central Atlantic oceans
(e.g. Piqué et al., 2000). The inversion of the Mesozoic
basins occurred from Cenozoic to present times in re-
sponse to the convergence between Africa and Europe
(Mattauer et al., 1977, Giese & Jacobshagen, 1992). Over
the past 45 Myr, collision of the African and European
plates has deformed the former rift (Gomez et al., 2000).
Recent geophysical data show the existence of a 600 km
long and 200 km wide channel of abnormally thin litho-
sphere (Fig. 1), extending from the passive continental
margin near the Canary Islands and beneath the Atlas
Mountains to the Mediterranean (see Fig. 1 for the location
of this subcontinental trans-Atlas corridor) (Teixell et al.,
2005; Zeyen et al., 2005; Fuella Urchulutegui et al., 2006;
Missenard et al., 2006).

Several studies have proposed delamination of subconti-
nenal lithosphere under NW Africa to explain the volcan-
ism, the intermediate depth of regional earthquakes and
the rapid uplift of the Atlas Mountains (Seber et al., 1996;
Ramdani, 1998; Duggen et al., 2005, 2009). Delamination
may be triggered by lithospheric shortening. Evaluation of
tectonic shortening ratios in both the High and Middle
Atlas has yielded values ranging from 10 to 45% (Brede
et al., 1992; Zouine, 1993; Beauchamp et al., 1999; Gomez
et al., 2000; Teixell et al., 2003), with most of the values clus-
tering around 20%. Ratios below 20% were considered
insufficient to cause delamination and were used to argue
against a delamination model for the formation of the
Trans-Atlas NW African sublithospheric corridor. The
Atlas system, however, corresponds to a failed Early
Mesozoic rift structure prone to delamination upon com-
pression, even at moderate amounts of shortening.
Furthermore, shortening is not a necessary condition to ini-
tiate lithospheric thinning and subsequent delamination.
Lateral density contrasts within the upper mantle as small
as 1% are sufficient to generate extensional stresses large
enough to drive gravitational Rayleigh—Taylor instabilities
and consequently promote delamination or lithospheric re-
moval (Elkins-Tanton, 2005).

Rifting-related Triassic dolerite-diabase and Jurassic
gabbro bodies are widespread in the High Atlas
(Hailwood & Mitchell, 1971; Chévrement, 1975; Zayane,
1992; Beraaouz et al.,1994). Gravity data show the existence
of such lithologies at minimum depths of 10 and 26 km
(Ayarza et al., 2003). Buried at such depths and deeper
(>50km), gabbro and dolerite-diabase rocks may meta-
morphose to higher-temperature and -pressure mineral as-
semblages, producing a higher-density eclogitic rock (e.g.
3-3-3-5 gJem®; Leech, 2001). The density contrast between
the newly formed eclogite and the laterally adjacent mater-
1als will drive a gravitational instability, which consequent-
ly promotes delamination. Numerical models indicate that
delamination can occur in less than 5 Myr (Elkins-Tanton
& Hager, 2000). This timescale is in good agreement with
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the 4 Myr calculated as the duration of the magmatic epi-
sodes that occurred at Tamazert (42-38 Ma); coincident
with the European—African collisional event. During
Paleocene—Eocene times, the African and European
plates drifted eastward (Brede e al., 1992), causing a re-
orientation of the compressional stress, and consequently
shifting the stress regime from transpressional to transten-
sional at the Eocene-Oligocene boundary (¢. ~40 Ma),
contemporaneously with the emplacement of the
Tamazert complex. Accordingly, Kchit (1990) assumed
syntectonic emplacement for the Tamazert intrusion
along two sets of crustal fractures caused by the same
SW-NE sinistral shearing. Convergence rates between
the African and European plates have increased since
the Miocene (Brede et al., 1992), resulting in the produc-
tion of large volumes of anorogenic alkaline effusive rocks
with minor pyroclastic deposits and high-level intrusions
that cover much of the Middle and High Atlas domains
(Fig. 1).

Based on the geochemical similarity between silicate
volcanic rocks erupted above the corridor in the Middle
Atlas and in northern Morocco near the Mediterranean,
Duggen et al. (2009) proposed that plume material upwell-
ing beneath the Canary Islands flowed laterally beneath
NW Africa through the “Trans-Atlas corridor’ The plume
material flowing through the corridor melts by decompres-
sion as the lithosphere thickness above the corridor be-
comes thinner, causing volcanism in the Middle Atlas and
areas in northern Morocco near the Mediterranean. The
similarity in trace element and Sr—Nd—Pb isotopic com-
position between the Tamazert, Canary and Cape Verde
carbonatites, in particular when compared with carbona-
tites from eastern and southern Africa, is startling, further
supporting a strong link between the Canary Islands and
Cenozoic volcanism in northwesternmost Africa (northern
Morocco). The Eocene Tamazert carbonatites represent
the oldest magmatic rocks above the lithospheric corridor
recognized thus far that have Sr—Nd-Pb isotopic compos-
itions consistent with being derived from inflowing carbo-
nated Canary mantle plume material. Therefore we
propose that at least part of the lithospheric corridor may
have been open by ~42 Ma ago, consistent with the
African—European collisional event being the cause of the
formation of the sublithospheric corridor. Finally, we
briefly address the close similarity between both the sili-
cate and carbonatitic rocks from the Canary Islands,
Morocco and the Cape Verde Islands.
Interestingly, in the most recent seismic tomographic

northern

images of the mantle beneath this region, the Canary and
Cape Verde low-velocity anomalies are connected at
depths of about 1000 km, suggesting that the plumes feed-
ing both island groups and volcanism above the
“Irans-Atlas corridor’ are ultimately derived from a
common deep-mantle source (Montelli et al., 2006),
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consisting of recycled oceanic magmatic and carbonate
crustal rocks (Hoernle e/ al., 2002).

CONCLUSIONS

Carbonatites from the Eocene Tamazert complex in the
Moroccan High Atlas Range include calcio-, magnesio-
and silicocarbonatites. They are all enriched in LREE
and LILE (Cs, Rb, Ba, U and Th), but show relative de-
pletion in HFSE. In the C-O isotope diagram, the
Tamazert carbonatites form an array between the mantle
box and marine sediments.

Two groups of calciocarbonatites exist in the eastern
Tamazert complex: (1) a group with high Sr and Ba,
mantle-like O and C isotopic compositions, and relatively
unradiogenic Sr but radiogenic Nd and Pb isotopic com-
positions; (2) a group with low Sr and Ba, elevated O and
C isotopic compositions, and very radiogenic Sr and unra-
diogenic Nd, *Pb/***Pb and *"Pb/***Pb isotopic com-
positions. The low-Sr calciocarbonatites are interpreted to
have acquired their radiogenic isotopic compositions
through interaction with Jurassic limestones and other
crustal rocks, whereas the high-Sr calciocarbonatites are
considered to reflect the composition of the primary car-
bonatite melts derived from the mantle.
carbonatites,
mantle-like C and O isotopic compositions, have distinct
incompatible and isotopic compositions from the high-Sr,
mantle-derived carbonatites from eastern Tamazert, indi-

The western Tamazert which have

cating derivation from different mantle sources. Whereas
the eastern Tamazert calciocarbonatites with high Sr have
more HIMU-like radiogenic isotopic compositions, the
western Tamazert carbonatites have more EM-like radio-
genic isotopic compositions with slightly less radiogenic
Nd and also less radiogenic Pb isotopic compositions.

The magnesio- and silicocarbonatites from eastern
Tamazert have elevated O and C isotopic compositions
indicating interaction with hydrothermal fluids rich in
magnesium and silica. They have similar incompatible
element characteristics to some calciocarbonatites and iso-
topic compositions similar to the eastern Tamazert car-
bonatites, except that they have slightly elevated
200ph/?*Ph isotope ratios. The slightly higher *’°Pb/***Pb
ratios could be derived from associated mafic and ultra-
mafic silicate rocks with high U/Pb ratios, which are also
likely to be the source of the magnesium and silica
involved in forming the magnesio- and silicocarbonatites.
These carbonatites are interpreted to have been derived
from calciocarbonatite parent magmas that were altered
within the crust by interaction with hydrothermal fluids.

The Tamazert calciocarbonatites with mantle-like O and
C isotopic compositions have Sr—Nd—Pb isotope signatures
distinct from eastern and southern African continental car-
bonatites but instead show remarkable geochemical simila-
rities to (1) oceanic carbonatites from the Canary and
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Cape Verde Islands, and (2) other continental alkaline ig-
neous rocks found in the Atlas system, such as the mafic
silicate igneous rocks from the Eocene Rekkame and the
Miocene and Quaternary Middle Atlas volcanic fields.
The close similarity between the geochemistry of the
Tamazert and Canary carbonatites and the lack of geo-
physical evidence for a mantle plume beneath the central
High Atlas suggest derivation of the Tamazert carbonatites
from the Canary plume, possibly as a result of flow of
Canary plume-type mantle through a lithospheric corri-
dor beneath northern Morocco. In this case, the sublitho-
spheric corridor must have begun formed at least 45 Myr
ago. The presence of geochemically very similar carbona-
tites in the central High Atlas, Canary Islands and Cape
Verde Islands, combined with seismic tomographic data,
argues for derivation from a common lower mantle

(>1000 km depth) source.
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