1,903 research outputs found
Making and Breaking Impasses in International Regimes. The WTO, Seattle and Doha
WTO; international agreements; international trade; governance
The x ray reflectivity of the AXAF VETA-I optics
The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror
Recommended from our members
Ultra-wide Range Gamma Detector System for Search and Locate Operations
Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local and remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented
Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2
Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and noninvasively observe animals. The vast number of images collected from camera trap projects has prompted some biologists to employ machine learning algorithms to automatically recognize species in these images, or at least filter-out images that do not contain animals. These approaches are often limited by model transferability, as a model trained to recognize species from one location might not work as well for the same species in different locations. Furthermore, these methods often require advanced computational skills, making them inaccessible to many biologists. We used 3 million camera trap images from 18 studies in 10 states across the United States of America to train two deep neural networks, one that recognizes 58 species, the “species model,” and one that determines if an image is empty or if it contains an animal, the “empty-animal model.” Our species model and empty-animal model had accuracies of 96.8% and 97.3%, respectively. Furthermore, the models performed well on some out-of-sample datasets, as the species model had 91% accuracy on species from Canada (accuracy range 36%–91% across all out-of-sample datasets) and the empty-animal model achieved an accuracy of 91%–94% on out-of-sample datasets from different continents. Our software addresses some of the limitations of using machine learning to classify images from camera traps. By including many species from several locations, our species model is potentially applicable to many camera trap studies in North America. We also found that our empty-animal model can facilitate removal of images without animals globally. We provide the trained models in an R package (MLWIC2: Machine Learning for Wildlife Image Classification in R), which contains Shiny Applications that allow scientists with minimal programming experience to use trained models and train new models in six neural network architectures with varying depths
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
2016 AAPP Monograph Series: African American Professors Program
The African American Professors Program (AAPP) at the University of South Carolina is honored to publish this fifteenth edition of its annual monograph series. AAPP recognizes the significance of offering scholars a venue through which to engage actively in research and to publish their refereed papers. Parallel with the publication of their manuscripts is the opportunity to gain visibility among colleagues throughout postsecondary institutions at national and international levels.
Scholars who have contributed papers for this monograph are acknowledged for embracing the value of including this responsibility within their academic milieu. Writing across disciplines adds to the intellectual diversity of these manuscripts. From neophytes to quite experienced individuals, the chapters have been researched and written in depth.
Founded in 1997 through the Department of Educational Leadership and Policies in the College of Education, AAPP was designed originally to address the under-representation of African American professors on college and university campuses. Its mission is to expand the pool of these professors in critical academic and research areas. Sponsored historically by the University of South Carolina, the W.K. Kellogg Foundation, and the South Carolina General Assembly, the program recruits doctoral students for disciplines in which African Americans currently are underrepresented among faculty in higher education.
The continuation of this monograph series is seen as responding to a window of opportunity to be sensitive to academic expectation of graduates as they pursue career placement and, at the same time, to allow for the dissemination of products of scholarship to a broader community. The importance of this series has been voiced by one of our 2002 AAPP graduates, Dr. Shundelle LaTjuan Dogan, formerly an Administrative Fellow at Harvard University, a Program Officer for the Southern Education Foundation, and a Program Officer for the Arthur M. Blank Foundation in Atlanta, Georgia. She is currently a Corporate Citizenship and Corporate Affairs Manager for IBM-International Business Machines in Atlanta, Georgia and has written the Foreword for the 2014 monograph.
Dr. Dogan wrote: One thing in particular that I want to thank you for is having the African American Professors Program scholars publish articles for the monograph. I have to admit that writing the articles seemed like extra work at the time. However, in my recent interview process, organizations have asked me for samples of my writing. Including an article from a published monograph helped to make my portfolio much more impressive. You were \u27right on target\u27 in having us do the monograph series. (AAPP 2003 Monograph, p. xi)
The African American Professors Program continues the tradition as a promoter of international scholarship in higher education evidenced through the inspiration from this group of interdisciplinary manuscripts. I hope that you will envision these published papers to serve as an invaluable contribution to your own professional development and career enhancement.
John McFadden, PhD
The Benjamin Elijah Mays Distinguished Professor Emeritus
Director, African American Professors Program
University of South Carolinahttps://scholarcommons.sc.edu/mcfadden_monographs/1003/thumbnail.jp
Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV
The t t-bar production cross section (sigma[t t-bar]) is measured in
proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS
experiment, corresponding to an integrated luminosity of 2.3 inverse
femtobarns. The measurement is performed in events with two leptons (electrons
or muons) in the final state, at least two jets identified as jets originating
from b quarks, and the presence of an imbalance in transverse momentum. The
measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/-
2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction
of the standard model.Comment: Replaced with published version. Included journal reference and DO
Search for anomalous t t-bar production in the highly-boosted all-hadronic final state
A search is presented for a massive particle, generically referred to as a
Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are
sufficiently massive to produce highly Lorentz-boosted top quarks, which yield
collimated decay products that are partially or fully merged into single jets.
The analysis uses new methods to analyze jet substructure, providing
suppression of the non-top multijet backgrounds. The analysis is based on a
data sample of proton-proton collisions at a center-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits
in the range of 1 pb are set on the product of the production cross section and
branching fraction for a topcolor Z' modeled for several widths, as well as for
a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any
enhancement in t t-bar production beyond expectations of the standard model for
t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version
includes a minor typo correction that will be submitted as an erratu
- …