22 research outputs found

    Experience from an optional dissection course in a clinically‐orientated concept to complement system‐based anatomy in a reformed curriculum

    Get PDF
    Profound anatomical knowledge is the basis for modern demands in medicine and surgery, but many countries worldwide including Australia and New Zealand have discontinued offering dissection courses to medical and dental students during the past decades. This educational project done in Australia aimed at enhancing basic and advanced anatomy teaching by engaging a sub-group of second-year undergraduate students of a compulsory prosection- and model-based anatomy course (n = 54/170) in an optional multimodal course, which should easily articulate with a vertical curriculum. With topographical cadaver dissections as core, peer student-teams prepared and peer-assessed anatomy lectures based on clinical topics, which were rated highly by the peers and teachers. Anatomical knowledge was tested by quizzes and a multiple-choice examination. Individual dissection skills were self- and teacher-assessed. A final course grade was assigned based on these assessments. The grades in the system-based compulsory course achieved by the attendees of the paralleling dissection course were compared with their peers attending other optional courses. After beginning of the semester, the students in the dissection course performed similar, significantly (P < 0.005) improved during the semester (78.5% vs. 69.9%, 70.1% vs. 64.1%), but in the integrated (including anatomy, biochemistry, physiology) final examination at the end of the year only tended to higher scores. As assessed through interviews and a voluntary questionnaire, all students of the optional dissection course liked these activities, which enhanced their learning experience. Thus, this concept elegantly integrates anatomical dissection with modern teaching demands and is feasible for implementation in modernized curricula

    Loosely-guided, self-directed learning versus strictly-guided, station-based learning in gross anatomy laboratory sessions.

    No full text
    Item does not contain fulltextAnatomy students studying dissected anatomical specimens were subjected to either a loosely-guided, self-directed learning environment or a strictly-guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly-guided gross anatomy laboratory sessions lead to higher learning gains than loosely-guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second-year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station-based laboratory sessions; the other half, the control group, to loosely-guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly-guided group scored higher than the loosely-guided group at all time-points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between-subject effect (P </= 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly-guided group than for the loosely-guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. (c) 2012 American Association of Anatomists.1 november 201

    Blastomyces dermatitidis Yeast Cells Inhibit Nitric Oxide Production by Alveolar Macrophage Inducible Nitric Oxide Synthase ▿

    No full text
    The ability of pathogens to evade host antimicrobial mechanisms is crucial to their virulence. The dimorphic fungal pathogen Blastomyces dermatitidis can infect immunocompetent patients, producing a primary pulmonary infection that can later disseminate to other organs. B. dermatitidis possesses a remarkable ability to resist killing by alveolar macrophages. To date, no mechanism to explain this resistance has been described. Here, we focus on macrophage production of the toxic molecule nitric oxide as a potential target of subversion by B. dermatitidis yeast cells. We report that B. dermatitidis yeast cells reduce nitric oxide levels in the supernatants of activated alveolar macrophages. This reduction is not due to detoxification of nitric oxide, but rather to suppression of macrophage nitric oxide production. We show that B. dermatitidis yeast cells do not block upregulation of macrophage inducible nitric oxide synthase (iNOS) expression or limit iNOS access to its arginine substrate. Instead, B. dermatitidis yeast cells appear to inhibit iNOS enzymatic activity. Further investigation into the genetic basis of this potential virulence mechanism could lead to the identification of novel antifungal drug targets
    corecore