11 research outputs found

    Accurate quantification of atherosclerotic plaque volume by 3D vascular ultrasound using the volumetric linear array method.

    Get PDF
    Direct quantification of atherosclerotic plaque volume by three-dimensional vascular ultrasound (3DVUS) is more reproducible than 2DUS-based three-dimensional (2D/3D) techniques that generate pseudo-3D volumes from summed 2D plaque areas; however, its accuracy has not been reported. We aimed to determine 3DVUS accuracy for plaque volume measurement with special emphasis on small plaques (a hallmark of early atherosclerosis). The in vitro study consisted of nine phantoms of different volumes (small and medium-large) embedded at variable distances from the surface (superficial vs. >5 cm-depth) and comparison of 3DVUS data generated using a novel volumetric-linear array method with the real phantom volumes. The in vivo study was undertaken in a rabbit model of atherosclerosis in which 3DVUS and 2D/3D volume measurements were correlated against gold-standard histological measurements. In the in vitro setting, there was a strong correlation between 3DVUS measures and real phantom volume both for small (3.0-64.5 mm(3) size) and medium-large (91.1-965.5 mm(3) size) phantoms embedded superficially, with intraclass correlation coefficients (ICC) of 0.99 and 0.98, respectively; conversely, when phantoms were placed at >5 cm, the correlation was only moderate (ICC = 0.67). In the in vivo setting there was strong correlation between 3DVUS-measured plaque volumes and the histological gold-standard (ICC = 0.99 [4.02-92.5 mm(3) size]). Conversely, the correlation between 2D/3D values and the histological gold standard (sum of plaque areas) was weaker (ICC = 0.87 [49-520 mm(2) size]), with large dispersion of the differences between measurements in Bland-Altman plots (mean error, 79.2 mm(2)). 3DVUS using the volumetric-linear array method accurately measures plaque volumes, including those of small plaques. Measurements are more accurate for superficial arterial territories than for deep territories.S

    Biomimetic Magnetic Nanocarriers Drive Choline Kinase Alpha Inhibitor inside Cancer Cells for Combined Chemo-Hyperthermia Therapy

    Get PDF
    Choline kinase a1 (ChoKa1) has become an excellent antitumor target. Among all the inhibitors synthetized, the new compound Ff35 shows an excellent capacity to inhibit ChoKa1 activity. However, soluble Ff35 is also capable of inhibiting choline uptake, making the inhibitor not selective for ChoKa1. In this study, we designed a new protocol with the aim of disentangling whether the Ff35 biological action is due to the inhibition of the enzyme and/or to the choline uptake. Moreover, we offer an alternative to avoid the inhibition of choline uptake caused by Ff35, since the coupling of Ff35 to novel biomimetic magnetic nanoparticles (BMNPs) allows it to enter the cell through endocytosis without interacting with the choline transporter. This opens the possibility of a clinical use of Ff35. Our results indicate that Ff35-BMNPs nanoassemblies increase the selectivity of Ff35 and have an antiproliferative effect. Also, we demonstrate the effectiveness of the tandem Ff35-BMNPs and hyperthermia.This research was funded by the Ministerio de Economía y Competitividad (CGL2013-46612 and CGL2016-76723 projects), Ramón y Cajal programme (RYC-2014-16901) and the Fondo Europeo de Desarrollo Regional (FEDER). Also, this research was aided by the Andalusian regional government (CTS-236)

    Enzyme Storage and Recycling: Nanoassemblies of \u3b1-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles

    No full text
    Immobilization of enzymes has been extensively required in a wide variety of industrial applications, as a way to ensure functionality and the potential of enzyme recycling after used. In particular, enzyme immobilization on magnetic nanoparticles (MNPs) could offer reusability by means of magnetic recovery and concentration, along with increased stability and robust activity of enzyme at different physicochemical conditions. In the present work, microbial \u3b1-amylase (AmyKS) and xylanase (XAn11) were both immobilized on different types of magnetic nanoparticles [MamC mediated biomimetic magnetic nanoparticles (BMNPs) and inorganic magnetic nanoparticles (MNPs)] by using two different strategies (electrostatic interaction and covalent bond). AmyKS immobilization was successful using electrostatic interaction with BMNPs. Instead the best strategy to immobilize XAn11 was using MNPs through the hetero-crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The immobilization protocols were optimized by varying glutaraldehyde (GA) concentration, enzyme quantity and reaction time. Under optimal conditions, 92% of AmyKS and 87% of XAn11 were immobilized on BMNPs and MNPs-E/N respectively (here referred as AmyKS-BMNPs and XAn11-MNPs nanoassemblies). The results show that the immobilization of the enzymes did not extensively alter their functionality and that increased enzyme stability compared to that of the free enzyme following upon storage at 4 \ub0C and 20 \ub0C. Interestingly, the immobilized amylase and xylanase were reused for 15 and 8 cycles respectively without signi\ufb01cant loss of activity upon magnetic recovering of the nanoassemblies. Results suggest the great potential of these nanoassemblies in bio-industry applications

    The mutation of Transportin 3 gene that causes limb girdle muscular dystrophy 1F induces protection against HIV-1 infection

    No full text
    The causative mutation responsible for limb girdle muscular dystrophy 1F (LGMD1F) is one heterozygous single nucleotide deletion in the stop codon of the nuclear import factor Transportin 3 gene (TNPO3). This mutation causes a carboxy-terminal extension of 15 amino acids, producing a protein of unknown function (TNPO3_mut) that is co-expressed with wild-type TNPO3 (TNPO3_wt). TNPO3 has been involved in the nuclear transport of serine/arginine-rich proteins such as splicing factors and also in HIV-1 infection through interaction with the viral integrase and capsid. We analyzed the effect of TNPO3_mut on HIV-1 infection using PBMCs from patients with LGMD1F infected ex vivo. HIV-1 infection was drastically impaired in these cells and viral integration was reduced 16-fold. No significant effects on viral reverse transcription and episomal 2-LTR circles were observed suggesting that the integration of HIV-1 genome was restricted. This is the second genetic defect described after CCR5Δ32 that shows strong resistance against HIV-1 infection.status: publishe

    RENACER study: Assessment of 12-month efficacy and safety of 168 certolizumab PEGol rheumatoid arthritis-treated patients from a Spanish multicenter national database

    No full text
    Objective: To assess effectiveness and safety of certolizumab PEGol (CZP) in rheumatoid arthritis (RA) patients after 12 months of treatment and to detect predictors of response.Methods: Observational longitudinal prospective study of RA patients from 35 sites in Spain. Variables (baseline, 3- and 12-month assessment): sociodemographics, previous Disease Modifying Anti-Rheumatic Drug (DMARD) and previous Biological Therapies (BT) use; TJC, SJC, ESR, CRP, DAS28, SDAI. Response variables: TJC, SJC, CRP, ESR, and steroids dose reductions, EULAR Moderate/Good Response, SDAI response and remission, DAS28 remission. Safety variables: discontinuation due to side-effects. Descriptive, comparative and Logistic regression analyses were performed.Results: We included 168 patients: 79.2% women, mean age 54.5 years (+/- 13.2 SD), mean disease duration 7.5 years (+/- 7.3 SD). Mean number of prior DMARD: 1.4 (+/- 1.2 SD), mean number of prior BT was 0.8 (+/- 1.1). Mean time on CZP was 9.8 months (+/- 3.4 SD). A total of 71.4% were receiving CZP at 12-month assessment. Baseline predictors of response: lower prior number DMARD; low number prior BT; higher CRP, ESR, TJC, SJC, DAS28 and SDAI (

    Chromatin modifications in trypanosomes due to stress

    No full text
    Trypanosomatids are parasites of worldwide distribution with relevant importance in human and veterinary health, which inhabit invertebrate and vertebrate hosts, such that they are exposed to large environmental variations during their life cycle. the signalling mechanisms and molecular basis that lead these parasites to adjust to such distinct conditions are beginning to be understood, and are somehow related to modifications in gene expression. Although the control of gene expression in this group of organisms happens predominantly at the post-transcriptional level, they present modifications in chromatin that has been implicated in transcription initiation, replication and DNA repair. Here, we explore the current scenario of chromatin alterations in these protozoans and how these changes affect transcription, replication and DNA repair in response to environmental modifications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilWeb of Scienc

    The Hallmarks of Aging

    No full text
    corecore