58 research outputs found

    The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases

    Get PDF
    The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs but the third GT was identified in this study. We determined the GT functions by comparing the wild-type glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT genes mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a β-L-rhamnosyltransferase activity, domain 2 has an α -L-rhamnosyltransferase activity and domain 3 is a methyltransferase that decorates two positions in the terminal α -L-rhamnose (Rha) unit. The a075l gene encodes a β -xylosyltransferase that attaches the distal D-xylose (Xyl) unit to the L-fucose (Fuc) that is part of the conserved N-glycan core region. Lastly, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-D-Rha, to the same L-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans. Includes supplemental material

    Multivalent glycoconjugates as anti-pathogenic agents

    Get PDF
    Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein–glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategie

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The ATLAS fast tracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation. © The ATLAS collaboratio

    Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions

    Get PDF
    This work addresses the effect of sucrose concentration and temperature on the three activities displayed by the levansucrase from Zymomonas mobilis: formation of levan (polymerization), production of short-chain fructooligosaccharides (FOS), and sucrose hydrolysis. Of the conditions tested, levan formation reached the highest value at 4ºC and 100 g/L sucrose. The increase of temperature (40ºC) and sucrose concentration (600 g/L) caused a significant decrease of the levan concentration and a higher production of FOS. However, an increase of the temperature also caused an enhancement of the undesired hydrolytic activity. Several inulin-type FOS (1-kestose, nystose, 1F-fructosylnystose), neoFOS (blastose, neokestose, neonystose) and levan-type FOS (6-kestose, 6,6-nystose) were synthesized by levansucrase. The latter compound was purified and characterized by mass spectrometry and 2D NMR. Using 600 g/L sucrose at 40°C, the maximum yield of FOS was reached at 85% sucrose conversion; at this point, the reaction mixture contained (in weight basis) 31% glucose, 14% fructose, 15% sucrose and 40% FOS (including a small contribution of levan).This work was supported by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2013-48779-C4-1-R). We thank the support of COST-Action CM1303 on Systems Biocatalysts. We thank Amano Enzyme Inc. (Japan) for the kind donation of the levansucrase. We thank Beneo Iberica for the generous supply of an inulin sample (Raftiline). P. S-M. thanks the Spanish Ministry of Education for FPU Grant.Peer reviewe

    Control of disaccharide conformation through pi-stacking

    No full text
    The conformations of a series of derivatives of the disaccharide α-L-fucopyranosyl-(1→3)-2-acetamido-2- deoxy-D-glucopyranoside, part of the Lex determinant, were studied by molecular modelling using the MM3* forcefield and by 1H NMR spectroscopy. Unusually shielded O-benzyl protons were observed in the 1H NMR spectrum of phenyl 2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→3)-2-deoxy-2-phthalimido-1-thio-α-D-glucopyranoside and assigned to the 2-O-benzyl group. This observation was explained by a shift in the population of the conformational mixture present about the glycosidic linkage from the positive ψ region in the unsubstituted disaccharide to the negative ψ region induced by π-stacking between the phthalimide and the 2-O-benzyl phenyl ring. The experimental nuclear Overhauser enhancements confirm the accuracy of the calculations

    Zwitterionic Polysaccharides of Shigella sonnei: Synthetic Study toward a Ready-for-Oligomerization Building Block Made of Two Rare Amino Sugars

    No full text
    Published as part of the Special Section on the 26th French–Japanese Symposium on Medicinal and Fine Chemistry.International audienceShigellosis is an endemic diarrheal disease caused by Gram negative bacteria named Shigella. The most exposed polysaccharides of Shigella sonnei display a zwitterionic disaccharide repeating unit (AB) made of two rare amino sugars: [4)-α-l-AltpNAcA-(1→3)-β-d-FucpNAc4N-(1→]. An original synthesis of a ready-for-oligomerization AB disaccharide is reported. The targeted orthogonally protected disaccharide was synthesized from l-glucose and tetra-O-acetyl-β-d-glucosamine. The challenging introduction of the 4B-azido group masking the amino moiety of the AAT residue was performed at the disaccharide stage by a two-step procedure (triflation followed by nucleo­philic displacement with NaN3). A post-glycosylation oxidation strategy was employed to access the altruronate moiety
    corecore