716 research outputs found

    A novel view of plane wave expansion method in photonic crystals

    Full text link
    We propose a method derived from the simple plane wave expansion that can easily solve the interface problem between vacuum and a semi-infinite photonic crystal. The method is designed to find the complete set of all the eigenfunctions, propagating or evanescent, of the translation operators {TR}\{{\bf T_R} \}, at a fixed frequency. With these eigenfunctions and their eigenvalues, the transmitted and reflected waves can be determined. Two kinds of applications are presented for 2D photonic crystals. The first is a selection rule for determine the normal direction of the vacuum-photonic crystal interface to achieve the highest attenuation effect at a gap frequency. The second is to calculate the transmittance and reflectance for a light incident from vacuum to an semi-infinite photonic crystal. As an example we recalculate a system studied previously by K. Sakoda et al. and get results in agreement with theirs

    First principles molecular dynamics study of filled ice hydrogen hydrate

    Full text link
    We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C2 by using first principles molecular dynamics simulation. It was found that the experimentally reported 'cubic' structure is unstable at low temperature and/or high pressure. The 'cubic' structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the 'cubic' symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in 'cubic' symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecues rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially NMR spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and/or low temperatures.Comment: typos correcte

    Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    Get PDF
    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application

    Magnetic Field Effects in the Pseudogap Phase: A Competing Energy Gap Scenario for Precursor Superconductivity

    Full text link
    We study the sensitivity of T_c and T^* to low fields, H, within the pseudogap state using a BCS-based approach extended to arbitrary coupling. We find that T^* and T_c, which are of the same superconducting origin, have very different H dependences. This is due to the pseudogap, \Delta_{pg}, which is present at the latter, but not former temperature. Our results for the coherence length \xi fit well with existing experiments.We predict that very near the insulator \xi will rapidly increase.Comment: 4 pages, 4 figures, RevTe

    Desenvolvimento de estrutura de Kartcross

    Get PDF
    A estrutura de um kartcross Ê um dos elementos com maior importância neste tipo de veículos, pois para alÊm de agregar e suportar os restantes componentes, Ê o componente que permite a proteção do ocupante do veículo. Nesta tese foi concebida uma estrutura para um veículo kartcross, de acordo com o regulamento da Federação Internacional do Automóvel (FIA). Foram tidos em consideração os principais requisitos regulamentares para o desenvolvimento de uma estrutura homologåvel. Foi efetuado um estudo de simulação estrutural por elementos finitos, para avaliar o seu desempenho mecânico e verificar se a estrutura cumpre com os requisitos de segurança, em particular a cÊlula de sobrevivência, de acordo com as condiçþes definidas no regulamento da FIA. Foi tambÊm efetuado um estudo simplificado de otimização estrutural com vista a melhorar o seu desempenho no que respeita à resistência e à rigidez à torção.The structure of a kartcross is one of the most important elements in this type of vehicle, because besides adding and supporting the other components, it is the component that allows the protection of the occupant of the vehicle. In this thesis a structure for a kartcross vehicle was conceived, according to the regulation of the International Automobile Federation (FIA). The main regulatory requirements for the development of an approvable have been taken into account. A finite element structural simulation study was carried out to assess its mechanical performance and to verify that it meets the safety conditions of the survival cell according to the conditions defined in the FIA regulation. A simplified structural optimization study has also been carried out to improve its performance, in particular with regard to strength and torsional stiffness.

    Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    Get PDF
    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept

    Spin correlations in the algebraic spin liquid - implications for high Tc superconductors

    Full text link
    We propose that underdoped high TcT_c superconductors are described by an algebraic spin liquid (ASL) at high energies, which undergoes a spin-charge recombination transition at low energies. The spin correlation in the ASL is calculated via its effective theory - a system of massless Dirac fermions coupled to a U(1) gauge field. We find that without fine tuning any parameters the gauge interaction strongly enhances the staggered spin correlation even in the presence of a large single particle pseudo-gap. This allows us to show that the ASL plus spin-charge recombination picture can explain many highly unusual properties of underdoped high TcT_c superconductors.Comment: 22 pages, 18 figures, submitted to PR

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices

    Heliogyro Solar Sail Research at NASA

    Get PDF
    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore