25 research outputs found

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls

    Get PDF
    Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10−5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects

    Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    Get PDF
    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    Get PDF
    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    Full text link
    Genome-wide association studies (GWASs) perform per-SNP association tests to identify variants involved in disease or trait susceptibility. However, such an approach is not powerful enough to unravel genes that are not individually contributing to the disease/trait, but that may have a role in interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes belonging to the CAM network. We highlighted 64 networks enriched with CAM genes with low P-values. Filtering by a percentage of CAM genes up to 50% and rejecting enriched signals mainly driven by transcription factors, we highlighted five networks associated with MS susceptibility. One of them, constituted of ITGAL, ICAM1 and ICAM3 genes, could be of interest to develop novel therapeutic targets

    Genome-wide estimates of inbreeding in unrelated individuals and their association with cognitive ability

    No full text
    The consequence of reduced cognitive ability from inbreeding has long been investigated, mainly restricted to cousin–cousin marriages. Molecular genetic techniques now allow us to test the relationship between increased ancestral inbreeding and cognitive ability in a population of traditionally unrelated individuals. In a representative UK sample of 2329 individuals, we used genome-wide SNP data to estimate the percentage of the genome covered by runs of homozygous SNPs (ROH). This was tested for association with general cognitive ability, as well as measures of verbal and non-verbal ability. Further, association was tested between these traits and specific ROH. Burden of ROH was not associated with cognitive ability after correction for multiple testing, although burden of ROH was nominally associated with increased non-verbal cognitive ability (P=0.03). Moreover, although no individual ROH was significantly associated with cognitive ability, there was a significant bias towards increased cognitive ability in carriers of ROH (P=0.002). A potential explanation for these results is increased positive assortative mating in spouses with higher cognitive ability, although we found no evidence in support of this hypothesis in a separate sample. Reduced minor allele frequency across the genome was associated with higher cognitive ability, which could contribute to an apparent increase in ROH. This may reflect minor alleles being more likely to be deleterious
    corecore