298 research outputs found

    Robotic Inspection of Geometrically Complex Tank Systems

    Get PDF
    The primary focus of this project is to create an autonomous rail based robot to inspect and traverse tanks with the idea of future improvements that would carry out all duties of the refurbishing process. By using a more cost-efficient method of semi-autonomous robotic inspection and refurbishment, Newport News Shipbuilding will be able to reduce the risk of harm and level of manual labor required for the refurbishment process. Additionally, the amount of personal protective equipment that needs disposal should be decreased, thus having a positive impact on the environment. An initial prototype was developed as a 2013-2014 senior project. The goal of this year’s project is to make desired improvements of the rail system, such as inverting the rail system, turning corners, and adding the capability of determining the location of the robot. The need to invert the rail system is to improve clearance through the portals for easier access throughout the tank while the workers are installing the system. By adding the ability to turn corners, the flexibility of the system is increased with regards to system reach and tank access. Finally, a method for determining its position within the tanks is required in order to allow external control of the installed system. This will increase safety by avoiding the need for a human observer in the bay while the robotic system is moving. Autodesk Inventor will be used for all design and analysis work. The proposed inverted rail system utilizes the same rail material as proposed in phase one. However, the spreader bar concept is replaced with a magnetic hanger system in order to improve flexibility during installation and operations. The carriage design will also modified in order to allow turning corners without removal from the rail system. The anticipated results are a semi-autonomous robotic system that can travel smoothly on a rail based system to inspect the tank, while being directed by human operators outside the tank environment. The anticipated results for Phase Two of this project are a carriage which can transport the required equipment for tank refurbishment throughout the tank, regardless of point of entry, all while transmitting positional information back to the operator. Future work will include improved position-detection equipment, as well as refinement to the carriage control system to allow better remote control of the system.https://scholarscompass.vcu.edu/capstone/1061/thumbnail.jp

    ARF GTPases and their GEFs and GAPs: concepts and challenges

    Get PDF
    Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families ( \u3e /=70 mammalian genes) will yield transformative insights into regulation of cell signaling

    What is the biological basis of pattern formation of skin lesions?

    Get PDF
    Pattern recognition is at the heart of clinical dermatology and dermatopathology. Yet, while every practitioner of the art of dermatological diagnosis recognizes the supreme value of diagnostic cues provided by defined patterns of 'efflorescences', few contemplate on the biological basis of pattern formation in and of skin lesions. Vice versa, developmental and theoretical biologists, who would be best prepared to study skin lesion patterns, are lamentably slow to discover this field as a uniquely instructive testing ground for probing theoretical concepts on pattern generation in the human system. As a result, we have at best scraped the surface of understanding the biological basis of pattern formation of skin lesions, and widely open questions dominate over definitive answer. As a symmetry-breaking force, pattern formation represents one of the most fundamental principles that nature enlists for system organization. Thus, the peculiar and often characteristic arrangements that skin lesions display provide a unique opportunity to reflect upon – and to experimentally dissect – the powerful organizing principles at the crossroads of developmental, skin and theoretical biology, genetics, and clinical dermatology that underlie these – increasingly less enigmatic – phenomena. The current 'Controversies' feature offers a range of different perspectives on how pattern formation of skin lesions can be approached. With this, we hope to encourage more systematic interdisciplinary research efforts geared at unraveling the many unsolved, yet utterly fascinating mysteries of dermatological pattern formation. In short: never a dull pattern

    Results from the first use of low radioactivity argon in a dark matter search

    Get PDF
    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.

    Observation Locator Table Access Protocol Version 1.0

    Get PDF
    The Observation Locator Table Access Protocol (ObsLocTAP) defines a data model for scheduled observations and a method to run queries over compliant data, using several Virtual Observatory technologies. The data model builds on the ObsCore data model, removing elements associated with dataset access that are not available during the planning phase. In this way, this standard is focused on access to metadata related to the planning of a certain observatory, more than on access to the scientific data products. Also, the data model will be focused on discovery of planned observations, which is very useful information for multi-wavelength coordination observations, re-planning information propagation, follow-up of Targets of Opportunity alerts, preparation of proposals, etc. As with ObsCore, a serialisation into a relational table is defined, which allows users to run complex queries using the IVOA Table Access Protocol. The document also prescribes how to register and discover ObsLocTAP services

    Australian Aboriginal Ethnometeorology and Seasonal Calendars

    Get PDF
    This paper uses a cultural anthropological approach to investigate an indigenous Australian perspective on atmospheric phenomena and seasons, using data gained from historical records and ethnographic fieldwork. Aboriginal people believe that the forces driving the weather are derived from Creation Ancestors and spirits, asserting that short term changes are produced through ritual. By recognizing signals such as wind direction, rainfall, temperature change, celestial movements, animal behaviour and the flowering of plants, Aboriginal people are able to divide the year into seasons. Indigenous calendars vary widely across Australia and reflect annual changes within Aboriginal lifestyles

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    Australian Aboriginal Ethnometeorology and Seasonal Calendars

    Full text link

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Results from the first use of low radioactivity argon in a dark matter search

    Full text link
    corecore