1,003 research outputs found

    Results from the commissioning of the ALICE Inner Tracking System with cosmics

    Get PDF
    The Inner Tracking System (ITS) is the detector of the ALICE central barrel located closest to the beam axis and it is therefore a key detector for tracking and vertexing performance. Here, the main results from the ITS commissioning with atmospheric muons in 2008 are presented, focusing in particular on the detector operation and calibration and on the methods developed for the alignment of the ITS detectors using reconstructed tracks.Comment: 4 pages, 1 figure with 3 panels (=3 separate eps files) To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Locomotive and reptation motion induced by internal force and friction

    Full text link
    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-elements model, we construct a model which exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model,. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.Comment: 10 pages, 7 figur

    Influence of the Leakage Current on the Performance of Large Area Silicon Drift Detectors

    Get PDF
    In this paper we investigate the influence of the leakage current on the performance of Silicon Drift Detectors. First, analytical considerations are given in order to highlight the problems, specific for this type of detector, that emerge with leakage current. Then the obtained results are compared with the data of laboratory measurements. Aiming at a mass production of SDDs for the Inner Tracking System of the ALICE experiment at LHC we propose a simple and fast measurement for a preliminary selection before passing to a detailed acceptance test

    Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities

    Full text link
    The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, the modeling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem which makes use of so called symmetry breaking instabilities as the engine of cell growth and division. It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking information but displaying self-reproduction under a very simple set of chemical reactions

    Dynamics of Internal Models in Game Players

    Full text link
    A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent's internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner's dilemma game is performed. The RNN allows us to express the internal model in a geometrical shape. The complicated transients of actions are observed before the stable mutually defecting equilibrium is reached. During the transients, the model shape also becomes complicated and often experiences chaotic changes. These new chaotic dynamics of internal models reflect the dynamical and high-dimensional rugged landscape of the internal model space.Comment: 19 pages, 6 figure

    Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

    Full text link
    We prove geometric LpL^p versions of Hardy's inequality for the sub-elliptic Laplacian on convex domains Ω\Omega in the Heisenberg group Hn\mathbb{H}^n, where convex is meant in the Euclidean sense. When p=2p=2 and Ω\Omega is the half-space given by ξ,ν>d\langle \xi, \nu\rangle > d this generalizes an inequality previously obtained by Luan and Yang. For such pp and Ω\Omega the inequality is sharp and takes the form \begin{equation} \int_\Omega |\nabla_{\mathbb{H}^n}u|^2 \, d\xi \geq \frac{1}{4}\int_{\Omega} \sum_{i=1}^n\frac{\langle X_i(\xi), \nu\rangle^2+\langle Y_i(\xi), \nu\rangle^2}{\textrm{dist}(\xi, \partial \Omega)^2}|u|^2\, d\xi, \end{equation} where dist(,Ω)\textrm{dist}(\, \cdot\,, \partial \Omega) denotes the Euclidean distance from Ω\partial \Omega.Comment: 14 page

    Beam test results of the irradiated Silicon Drift Detector for ALICE

    Full text link
    The Silicon Drift Detectors will equip two of the six cylindrical layers of high precision position sensitive detectors in the ITS of the ALICE experiment at LHC. In this paper we report the beam test results of a SDD irradiated with 1 GeV electrons. The aim of this test was to verify the radiation tolerance of the device under an electron fluence equivalent to twice particle fluence expected during 10 years of ALICE operation.Comment: 6 pages,6 figures, to appear in the proceedings of International Workshop In high Multiplicity Environments (TIME'05), 3-7 October 2005, Zurich,Switzerlan

    Mass Transportation on Sub-Riemannian Manifolds

    Get PDF
    We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann's Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows to write a weak form of the Monge-Amp\`ere equation

    On the Hausdorff volume in sub-Riemannian geometry

    Full text link
    For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C^3 (and C^4 on every smooth curve) but in general not C^5. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.Comment: Accepted on Calculus and Variations and PD
    corecore