80 research outputs found

    Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    Get PDF
    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/

    Developmental Delay, Treatment-Resistant Psychosis, and Early-Onset Dementia in a Man With 22q11 Deletion Syndrome and Huntington’s Disease

    Get PDF
    Schizophrenia usually emerges in late adolescence or early adulthood (1, 2). If cognitive deterioration occurs, it generally appears early and with relatively stable impairment over the next 5–10 years. Later in the illness, psychotic symptoms may become less intense, and there can be modest improvement in functional later in life (3–5). We present a case whose symptom onset and initial course of illness were typical (although early development was abnormal) but he evidenced notable treatment resistance. In his mid-30’s he developed progressive dementia. As this is atypical for schizophrenia, we conducted more detailed investigation

    Characterization of single gene copy number variants in schizophrenia

    Get PDF
    Background Genetic studies of schizophrenia have implicated numerous risk loci including several copy number variants (CNVs) of large effect and hundreds of loci of small effect. In only a few cases has a specific gene been clearly identified. Rare CNVs affecting a single gene offer a potential avenue to discovering schizophrenia risk genes. Methods CNVs were generated from exome-sequencing of 4,913 schizophrenia cases and 6,188 controls from Sweden. We integrated multiple CNV calling methods (XHMM and ExomeDepth) to expand our set of single-gene CNVs and leveraged two different approaches for validating these variants (qPCR and Nanostring). Results We found a significant excess of all rare CNVs (deletions p=0.0004, duplications p=0.0006) and single-gene CNVs (deletions p=0.04, duplications p=0.03) in schizophrenia cases compared to controls. An expanded set of CNVs generated from integrating multiple approaches showed a significant burden of deletions in 11/21 gene-sets previously implicated in schizophrenia and across all genes in those sets (p=0.008), although no tests survived correction. We performed an extensive validation of all deletions in the significant set of voltage-gated calcium channels among CNVs called from both exome-sequencing and genotyping arrays. In total, 4 exonic, single-gene deletions validated in cases and none in controls (p=0.039), of which all were identified by exome-sequencing. Conclusions These results point to the potential contribution of single-gene CNVs to schizophrenia, that the utility of exome-sequencing for CNV calling has yet to be maximized and single-gene CNVs should be included in gene focused studies using other classes of variation

    An inherited duplication at the gene p21 protein-activated Kinase 7 (PAK7) is a risk factor for psychosis

    Get PDF
    FUNDING Funding for this study was provided by the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z), the Wellcome Trust (072894/Z/03/Z, 090532/Z/09/Z and 075491/Z/04/B), NIMH grants (MH 41953 and MH083094) and Science Foundation Ireland (08/IN.1/B1916). We acknowledge use of the Trinity Biobank sample from the Irish Blood Transfusion Service; the Trinity Centre for High Performance Computing; British 1958 Birth Cohort DNA collection funded by the Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02) and of the UK National Blood Service controls funded by the Wellcome Trust. Chris Spencer is supported by a Wellcome Trust Career Development Fellowship (097364/Z/11/Z). Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust. ACKNOWLEDGEMENTS The authors sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. We thank W. Bodmer and B. Winney for use of the People of the British Isles DNA collection, which was funded by the Wellcome Trust. We thank Akira Sawa and Koko Ishzuki for advice on the PAK7–DISC1 interaction experiment and Jan Korbel for discussions on mechanism of structural variation.Peer reviewedPublisher PD

    Association of Candidate Genes with Phenotypic Traits Relevant to Anorexia Nervosa

    Get PDF
    This analysis is a follow-up to an earlier investigation of 182 genes selected as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN). As those initial case-control results revealed no statistically significant differences in single nucleotide polymorphisms, herein we investigate alternative phenotypes associated with AN. In 1762 females using regression analyses we examined: (1) lowest illness-related attained body mass index; (2) age at menarche; (3) drive for thinness; (4) body dissatisfaction; (5) trait anxiety; (6) concern over mistakes; and (7) the anticipatory worry and pessimism vs. uninhibited optimism subscale of the harm avoidance scale. After controlling for multiple comparisons, no statistically significant results emerged. Although results must be viewed in the context of limitations of statistical power, the approach illustrates a means of potentially identifying genetic variants conferring susceptibility to AN because less complex phenotypes associated with AN are more proximal to the genotype and may be influenced by fewer genes

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmÀn Eating Disorders Working Group of the Psychiatric Genomics Consortium jÀseniÀ. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    A genome-wide association study of anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202
    • 

    corecore