116 research outputs found

    Quantifying Relationships Between Bird and Butterfly Community Shifts and Environmental Change

    Get PDF
    Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997–2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species–habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change faster

    Quantifying Relationships Between Bird And Butterfly Community Shifts And Environmental Change.

    Get PDF
    Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997–2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species–habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change fasterSincere thanks go out to the University of Wyoming, National Park Service Research Center (AMK Ranch: Henry Harlow, director) for funding and accommodating our research team over the years. We also thank Brian Miller of the Denver Zoological Foundation for funding, collaboration, and general camaraderie. Data collection during 1997–2000 was funded by a grant from the Environmental Protection Agency (EPA) through their Ecological Assessment and Restoration program. Although funded by the EPA (through grant 96-NCERQA-1A to Debinski et al.), it has not been subjected to the Agency’s peer review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. Additional funding was provided by the Iowa Space Grant Consortium and the Grand Teton Natural History Association. Statistical consulting was provided by Kirk Moloney and Philip Dixon of Iowa State University. This manuscript was improved by the recommendations of M. Turner, C. Boggs, E. Fleishman, and two anonymous reviewers. Finally, thanks to the many field technicians who have helped over the years, especially Amanda Hetrick and Julie Perret

    Adsorption of Small Cationic Nanoparticles onto Large Anionic Particles from Aqueous Solution: A Model System for Understanding Pigment Dispersion and the Problem of Effective Particle Density

    Get PDF
    The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA71-PBzMA100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm(-3) to approximately 1.74 g cm(-3), as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles

    Mapping the Birch and Grass Pollen Seasons in the UK Using Satellite Sensor Time-series

    Get PDF
    Grass and birch pollen are two major causes of seasonal allergic rhinitis (hay fever) in the UK and parts of Europe affecting around 15-20% of the population. Current prediction of these allergens in the UK is based on (i) measurements of pollen concentrations at a limited number of monitoring stations across the country and (ii) general information about the phenological status of the vegetation. Thus, the current prediction methodology provides information at a coarse spatial resolution only. Most station-based approaches take into account only local observations of flowering, while only a small number of approaches take into account remote observations of land surface phenology. The systematic gathering of detailed information about vegetation status nationwide would therefore be of great potential utility. In particular, there exists an opportunity to use remote sensing to estimate phenological variables that are related to the flowering phenophase and, thus, pollen release. In turn, these estimates can be used to predict pollen release at a fine spatial resolution. In this study, time-series of MERIS Terrestrial Chlorophyll Index (MTCI) data were used to predict two key phenological variables: the start of season and peak of season. A technique was then developed to estimate the flowering phenophase of birch and grass from the MTCI time-series. For birch, the timing of flowering was defined as the time after the start of the growing season when the MTCI value reached 25% of the maximum. Similarly, for grass this was defined as the time when the MTCI value reached 75% of the maximum. The predicted pollen release dates were validated with data from nine pollen monitoring stations in the UK. For both birch and grass, we obtained large positive correlations between the MTCI-derived start of pollen season and the start of the pollen season defined using station data, with a slightly larger correlation observed for birch than for grass. The technique was applied to produce detailed maps for the flowering of birch and grass across the UK for each of the years from 2003 to 2010. The results demonstrate that the remote sensing-based maps of onset flowering of birch and grass for the UK together with the pollen forecast from the Meteorology Office and National Pollen and Aerobiology Research Unit (NPARU) can potentially provide more accurate information to pollen allergy sufferers in the UK

    Land transformation assessment using the integration of remote sensing and GIS techniques: a case study of Al-Anbar Province, Iraq

    Get PDF
    Human activities and climate changes significantly affect our environment, altering hydrologic cycles. Several environmental, social, political, and economical factors contribute to land transformation as well as environmental changes. This study first identified the most critical factors that affect the environment in Al-Anbar city including population growth, urbanization expansion, bare land expansion, and reduction in vegetation cover. The combination of remote sensing data and fuzzy analytic hierarch process (Fuzzy AHP) enabled exploration of land transformations and environmental changes in the study area during 2001 to 2013 in terms of long and short-term changes. Results of land transformation showed that the major changes in water bodies increased radically (94 %) from the long-term change in 2001 to 2013 because of water policies. In addition, the urban class expanded in two short-term periods (2001–2007 and 2007–2013), representing net changes of 46 and 60 %, respectively. Finally, barren land showed 25 % reduction in the first period because of the huge expansion of water in the lake; a small percentage of growth gain was observed in the second period. Based on the land transformation results, the environmental degradation assessment showed that the study area generally had high level of environmental degradation. The degradation was mostly in the center and the north part of the study area. This study suggested for further studies to include other factors that also responsible for environmental degradation such as water quality and desertification threatening

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses

    Get PDF
    For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed ‘half-pipe’. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
    corecore