77 research outputs found

    Synthetic strategies for modifying dielectric properties and the electron mobility of fullerene derivatives

    Get PDF
    The goal of this PhD research project was to develop fullerene derivatives with enhanced dielectric properties for photovoltaic applications. Organic solar cells suffer from relatively low power conversion efficiency mainly due to charge recombination, which stems from the low dielectric constant of these materials. Donor and acceptor combinations are necessary to avoid this, but that approach leads to other types of losses. Increasing the dielectric constant would be the fundamental way to cure the problem. In this thesis the effects of several synthetic strategies on the dielectric constant of fullerene derivatives are described. These strategies includes installing strong permanent dipole groups, incorporating flexible ethyleneoxy-type side chains with small dipoles, installing side chains with highly polarizable heavy atoms such as bromine and iodine and, finally, installing side chains which inherently have a high dielectric constant, such as cyclic carbonates. Theoretical calculations predicted enhanced charge separation upon replacing PCBM by fullerenes with side groups containing strong permanent dipoles, but interestingly their experimentally determined dielectric constant remained similar. Among the proposed strategies, installing ethyleneoxy-type side chains is shown to be a promising way to increase the dielectric constant by ~46 percent without devaluation of optical properties, electron mobility, and orbital energy levels of the compound. However, the length of these chains did not show a considerable effect on dielectric constant

    A Novel Multi-Criteria Decision-Making Framework in Electrical Utilities Based on Gray Number Approach

    Get PDF
    Given the current trend of reviving the power system, which is considered by competitive markets, the privatization of the power system is forcing them to develop the necessary decision-making policies from a technical and economic point of view to improve their asset management practices. Reliability-centered maintenance is an efficient process to consider these two important aspects, i.e. technical and economic ones when performing maintenance optimization. This paper proposes a new technique to solve the actual stochastic Multi-Criteria Decision-Making (MCDM) problems with uncertain weight information using a combination of Stochastic Multi-Criteria Acceptability Analysis (SMAA) and Elimination Et Choice Translating Reality (ELECTREIII) methods combined with gray system theory. In maintenance planning, gray system theory is used to determine the specific types of power system components that should receive the most attention. Then, the optimal maintenance strategy of every critical component is determined by recognizing the lowest costs associated with various strategies. The suggested framework demonstrates its relevance and efficacy for actual asset management optimizations in electric power systems, as demonstrated in the IEEE 14-bus test system.© 2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Sleep duration and its relationship with school performance in Iranian adolescents

    Get PDF
    Background. Inadequate or poor sleep quality is common problems in adolescent that affect on their learning, memory and school performance. The present study aimed to determine the association between sleep hours and academic performance in young adults. Methods .This cross-sectional study was designed as a descriptive- analytic study. Samples of adolescents of 14-18 years old in Qazvin city were enrolled. The Pediatric sleep questionnaire and BEARS questionnaire used for all students to screen comprehensively major sleeps problems in them. Chi-square test, t-test, analysis of variance (ANOVA), and correlation were performed to determine the relationship between the data (P < 0.001). Results. Between 653 adolescents, 40% were male and 60% were female. Sleep duration, sleep onset delay, sleep insufficient, rate of oversleeping and academic performance had a direct relationship with gender (P < 0.001). The sleep duration, rate of oversleeping and academic performance were significantly higher in boys, sleep onset delay and sleep insufficient was significantly higher in girls. Time of falling sleep at weekend nights and weekday nights have positively correlation with age (P < 0.001). Also, a significant relationship between students’ sleep hours with academic performance was shown (P < 0.001). Conclusions. The overall result was that sleep duration, sleep onset delay, sleep insufficient and rate of oversleeping of students in this study had a significant influence on academic performance. Students without difficulty in falling asleep had good academic performance in compared to students with difficulty in falling asleep

    Soft Nondamaging Contacts Formed from Eutectic Ga-In for the Accurate Determination of Dielectric Constants of Organic Materials

    Get PDF
    A method for accurately measuring the relative dielectric constant (εr) of thin films of soft, organic materials is described. The effects of the bombardment of these materials with hot Al atoms, the most commonly used top electrode, are mitigated by using electrodes fabricated from eutectic gallium-indium (EGaIn). The geometry of the electrode is defined by injection into microchannels to form stable structures that are nondamaging and that conform to the topology of the organic thin film. The εr of a series of references and new organic materials, polymers, and fullerene derivatives was derived from impedance spectroscopy measurements for both Al and EGaIn electrodes showing the specific limitations of Al with soft, organic materials and overcoming them with EGaIn to determine their dielectric properties and provide realistic values of εr

    Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer

    Get PDF
    We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%

    Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative

    Get PDF
    In this work, we investigate how electron extraction layers (EELs) with different dielectric constants affect the device performance and the light-soaking phenomenon in hybrid perovskite solar cells (HPSCs). Fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) having a dielectric constant of 5.9 is employed as an EEL in HPSCs. The commonly used fullerene derivative [60] PCBM, which has identical energy levels but a lower dielectric constant of 3.9, is used as a reference. The device using PTEG-1 as the EEL shows a negligible light soaking effect, with a power conversion efficiency (PCE) of 15.2% before light soaking and a minor increase to 15.7% after light soaking. In contrast, the device using [60] PCBM as the EEL shows severe light soaking, with the PCE improving from 3.8% to 11.7%. Photoluminescence spectroscopy and impedance spectroscopy measurements indicate that trap-assisted recombination at the interface between the hybrid perovskite and the EEL is the cause of the light soaking effect in HPSCs. The trap-assisted recombination is effectively suppressed at the perovskite/PTEG-1 interface, while severe trap assisted recombination takes place at the perovskite/[60] PCBM interface. We attributed these experimental findings to the fact that the higher dielectric constant of PTEG-1 helps to screen the recombination between the traps and free electrons. In addition, the electron donating side chains of PTEG-1 may also contribute to the passivation of the electron traps. As a consequence, the devices using PTEG-1 as the EEL display a considerable increase in the efficiency and a negligible light soaking effect

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin
    corecore