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ABSTRACT: A method for accurately measuring the relative dielectric
constant (εr) of thin films of soft, organic materials is described. The
effects of the bombardment of these materials with hot Al atoms, the
most commonly used top electrode, are mitigated by using electrodes
fabricated from eutectic gallium−indium (EGaIn). The geometry of the
electrode is defined by injection into microchannels to form stable
structures that are nondamaging and that conform to the topology of the
organic thin film. The εr of a series of references and new organic
materials, polymers, and fullerene derivatives was derived from
impedance spectroscopy measurements for both Al and EGaIn electrodes
showing the specific limitations of Al with soft, organic materials and
overcoming them with EGaIn to determine their dielectric properties and provide realistic values of εr.

■ INTRODUCTION

Years of theoretical and experimental studies have established
design rules to control many bulk properties of organic
materials (e.g., bandgaps). Mechanical, optical, and electrical
tuning can successfully be done synthetically by choosing the
right pendant group or atom to incorporate on the backbone of
a conjugated polymer, oligomer, or a small molecule. However,
one of the most important properties of these materials, the
relative dielectric constant (εr), which is well studied and
known for inorganic materials, remains difficult to control and
characterize for organic materials. To build a bridge between
theory and measurements, we need a fast and precise method
of deriving εr specifically for soft, organic materials. There are
many techniques for measuring εr, which can be classified in
different groups, namely, free space methods, transmission line,
and resonant. Each type of technique imposes different
limitations on the measured frequency range and the type of
material. Most of these techniques work well with (hard)
inorganic materials, liquids, and malleable solids but require
large amount (grams) of the tested materials.1−5 With the
discoveries of new, organic materials, which are typically
initially developed using milligram-scale synthetic routes,
versatile methods of characterization are needed.
In recent decades, there has been a lot of interest in

semiconductors made from organic materials such as
conjugated polymers, fullerene derivatives, and other small
molecules for applications in organic electronics, e.g., organic
field-effect transistors (OFETs), organic light-emitting diodes
(OLEDs), and organic photovoltaics (OPVs).6−9 More
recently, εr of organic materials has emerged as a useful
synthetic goal, due in part to the theoretical and modeling

work of Koster et al. predicting that power conversion
efficiencies (PCEs) of more than 20% can be achieved by
taking into account an increased εr up to 10.10 A few
approaches to the design of organic molecules for OPVs have
been studied to achieve increased εr in pursuit of higher
efficiencies, since most of the commonly used organic materials
exhibit a εr of 3−4. These approaches include the introduction
of high-εr dopants (small molecules or ions11,12) or the
modification of the molecular structure such that the materials
inherently demonstrate a higher dielectric constant preferably
without any change on other electrical or optical proper-
ties.13−15 The latter approach focuses more on the
introduction of pendant groups that are highly polarizable or
that exhibit high dielectric constants on conjugated polymers
and fullerene derivatives, such as cyano and nitrile groups or
the addition of fluorine atoms. However, to date relatively few
materials have been synthesized and their dielectric properties
carefully measured. High values of εr were observed for
polymers (from 3.5 to 5.0) and fullerene derivatives (from 3.9
to 4.9) bearing cyano groups, while larger increases were
observed with the addition of oligoethylene glycol (OEG) side
chains.13,16 Polymers with OEG chains exhibit values of εr ≤
6.3, which is among the highest reported in the literature so far
for conjugated polymers.17 The synthesis of new organic
materials is slow and resource intensive; months or years of
effort often result in only a few milligrams of testable material.
Thus, an experimental method of measuring εr that requires
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grams of material is a bottleneck in the development of
synthetic methodologies and design rules to control εr. An apt
comparison is bandgap engineering, where proof of concept of
the optical tuning of organic materials can be achieved with a
UV−vis measurement, which requires <10 of material and only
a few minutes to complete. A comparably precise, fast, and
reliable method for providing experimental feedback on εr to
synthetic efforts does not currently exist.
A commonly used technique for determining εr, which is

similar to the transmission line technique, is to measure the
dielectric response of devices using impedance spectroscopy
(IS). A thin film of the material under study is sandwiched
between two planar electrodes and subjected to a small
perturbation of low-amplitude ac signal with sweeping
frequency.12,15,18 This method allows measurements on
milligram quantities of (organic) materials, obviating gram-
scale synthetic routes for measuring εr. To derive the
capacitance (from which εr is determined), an equivalent
electric circuit of a real capacitor consisting of a series
resistance, a parallel resistance, and an ideal capacitor, as
shown in Figure 1a, is used for fitting the data.
The impedance of an ideal capacitor is

ω
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where Z′ is the real part and Z″ is the imaginary part of the
impedance of the circuit. Fitting the acquired data from IS in
eq 2, one can calculate Rs, Rp, and C with their errors. Knowing
the capacitance, the area of the device, A, and the thickness, d,
one can derive εr from

ε
ε

= Cd
Ar

0 (3)

where ε0 is the absolute dielectric permittivity.

The typical device used for IS measurements is similar to
bulk heterojunction (BHJ) OPV devices, consisting of a glass
substrate with four ITO areas acting as bottom electrode, a
PEDOT:PSS layer, a spin-cast layer of the material under
study, acting as dielectric, and four evaporated aluminum (Al)
contacts as top electrodes. Unfortunately, deriving εr for
organic semiconducting materials is not as streamlined as, for
example, an NMR measurement. Fabricating films of organic
materials by spin-coating can be difficult to control, particularly
the surface roughness of the film on which Al will be deposited.
This lack of control, unfortunately, does not always guarantee
that the deposition of Al will exactly follow the surface of the
film and can result in nonplanar, parallel electrodes, the
assumption of which is necessary to use eq 3 to derive εr;
rough films lead to an overestimation of εr.

19 Additional
difficulties arise from the over- or underestimation of d since
dents or bumps on the surfacewhich do not necessarily
average outwill change its value locally. Another issue that
arises is that Al must be deposited through thermal (or e-
beam) deposition in vacuo, which exposes the organic film to
heat and energetic metal atoms. Because the organic materials
tend to be soft (compared to their inorganic counterparts),
delicate, and redox active, the influence of Al on the
capacitance of the device could be crucial to the extraction
of the correct value εr. For example, the deposition of Al/LiF
contacts leads to the unintentional doping of thin films of
fullerene derivatives, resulting in an overestimation of εr by
about a factor of 2.20

We propose eutectic Ga−In (EGaIn) as an alternative
electrode to Al for the accurate determination of εr in soft and
otherwise delicate (organic) and/or scarce materials. EGaIn is
an inexpensive, commercially available eutectic alloy with a mp
of 15.5 °C.21 Upon exposure to air, a self-limiting 0.7 nm thick
layer of highly conductive Ga2O3 forms, which imparts shear-
yielding rheology.22 (The capacitance of βGa2O3 is on the
order of nF, which will have a negligible impact at the
thickness and conductance of the disordered Ga2O3 that forms
spontaneously, assuming that it even remains intact.23) Along
with its high electrical conductivity (3.4 × 104 S cm−1), the
unique rheology of EGaIn makes it an excellent candidate for a
top electrode making soft, electrical contacts because it can be
molded by soft lithography, while still conforming to
surfaces.24 It has already been extensively studied as a top-
contact for forming tunneling junctions comprising self-
assembled monolayers (SAMs) as shown in previous

Figure 1. (a) Equivalent circuit used for fitting impedance data. Rs represents the series resistance (in the range of Ω) due to plate resistance and
probe effects. The parallel resistance (Rp, in the range of MΩ) is needed to account for the finite resistance of real dielectric materials, and C
represents an ideal capacitor. (b) Device architecture with EGaIn as the top electrode. In lieu of a vapor-deposited metal electrode, a PDMS
channel is placed on top of the film and filled with EGaIn.
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studies.21,25−30 EGaIn contacts can be formed at room
temperature and are unreactive and nondamaging, avoiding
any steps requiring low pressure or high temperatures that may
damage the organic layer (e.g., as does LiF) while still
conforming to the surface topology like a vapor deposited
contact.24,31 To prepare electrodes for IS, EGaIn is simply
injected into preformed polydimethylsiloxane (PDMS) micro-
channels with the desired architecture for contacting the
organic layer as is shown in Figure 1.24,32,33

Impedance spectroscopy measurements with EGaIn have
already been reported for SAMs, which are far more fragile
than thin-films of organic materials,34 to calculate Rs, Rp, and
C; the results were in accordance with previously reported
values.35,36 In this work, substrates form a series of organic
materials, polymers and fullerene derivatives (Figure 2) were

fabricated, and IS measurements with two different electrodes
(Al and EGaIn) were performed to investigate their dielectric
properties. The device architecture is shown in Figures S1 and
S2.

■ RESULTS AND DISCUSSION
Poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-
butyric acid methyl ester ([60]PCBM) are among the most
commonly used and well-studied materials for organic
electronics, particularly OPV devices.37,38 Both of them exhibit
low values of εr = 3.0 for P3HT and 3.9 for PCBM.13,39,40

Impedance spectroscopy measurements were performed with
Al and EGaIn as top electrodes to verify their dielectric
properties. The Nyquist and Bode plots along with the
capacitance plotted over frequency are shown in Figure 3. The
Bode plot shows the dependence of |Z| on frequency, while the
Nyquist plot (inset) shows the behavior of a real capacitor with
the shape of a semicircle. For P3HT the dielectric constant for
both Al and EGaIn ε = 3.3 ± 0.1 and for PCBM 3.9 ± 0.1,
which are in accordance with the values reported in previous
literature.39 Although the capacitance differs between Al and
EGaIn top electrodes across most of the frequency range in
Figure 3, the areas of the two electrodes differ, giving rise to
similar values of ε.

As can be seen in Figures 3a and 3c, the capacitance of
P3HT and PCBM drops for frequencies higher than 104 Hz
with Al contacts, while with EGaIn contacts, the capacitance is
almost independent of frequency. This transition frequency
( f T, where |Z| drops by 10%) for low values of Rs (on the order
of 10 Ω) is observed at very high frequenciesoutside the
range accessible by the instrumentmaking the capacitance
frequency independent. With higher values of Rs (on the order
of 100 Ω), f T shifts to lower frequencies (104−106 Hz).
The frequency independence of capacitance with EGaIn

contacts can also be seen in the Bode plots (Figure 3b,d, |Z|,
black square over frequency) where the effect of Rs is observed
at the rightmost plateau of the plot for the case of Al (Figure
S3), while for EGaIn it is a straight line with a negative slope
(Figure 3b,d). Avoiding this abrupt drop in the capacitance, we
gain more data points from which we can derive C (eq 3) with
higher precision.
To validate the results from EGaIn further, we tested

another reference material, polystyrene (PS, Figure 2), a well-
studied material with an established value of ε = 2.6 (at 25 °C,
1 kHz−1 MHz).41 The capacitance over the frequency is
plotted in Figure 4a for Al and EGaIn as top electrodes. These
data yielded values of εr = 2.6 ± 0.1 for Al and 2.7 ± 0.1 for
EGaIn, both in agreement with the literature values within the
error margin. (See the Supporting Information for an
explanation of the uncertainty of ±0.1.) Moreover, the
frequency response of PS exhibits similar behavior as P3HT
and PCBM, showing a higher transition frequency for EGaIn
than Al near the end of the measured range. Devices with Al
contacts also produce higher values of Rs that EGaIn contacts.
One could argue that lower Rs are achieved due to a smaller
effective electrode area with EGaIn compared with Al. This
explanation, however, is ruled out by the observation of similar
values of capacitance for comparable areas (a1 of Al and a4 of
EGaIn, Figure S10) of electrodes in which devices using EGaIn
showed lower Rs than those using Al.
Having established that EGaIn electrodes produce the same

value of εr for the reference materialsincluding PS, the
dielectric properties of which are particularly well-definedwe
measured the dielectric properties of a series of fullerene
derivatives bearing different pendant groups that should effect
εr.
Devices from PCBCF3, a fullerene derivative bearing a

trifluoromethyl group, with varying film thicknesses, were
fabricated with the two different electrodes. Capacitance and
impedance plots are shown in the Supporting Information. The
values of Rs ≈ 100 Ω for Al and ∼10 Ω for EGaIn, following
the same trend described above. The calculated values of εr =
4.2 ± 0.1 for Al and 4.3 ± 0.1 for EGaIn, i.e., both methods
giving the same value within error. The dielectric constant of
PCBCF3 is comparable to the value of PCBM, a low-dielectric
material, as expected due to the low polarizability of the C−F
bond.42 As discussed by Hougham et al., in the case of −CF3,
although there is a decrease in the electronic polarization that
could lower the dielectric constant, the commensurate increase
of the dipole orientation overcompensates. As a result, there is
little overall change in the dielectric constant.43 That interplay
could explain the slightly increased εr of PCBCF3 compared to
PCBM.
Recently, materials with oligoethylene glycol chains (OEG)

have drawn interest due to the increased value of εr for
fulleneres and polymers bearing them. It has been shown that
they not only increase the polarity but also provide a higher

Figure 2. Structures of fullerene derivatives and polymers that were
used for impedance spectroscopy measurements with aluminum and
EGaIn as top electrodes.
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chain flexibility.16,18,44 We synthesized two fullerene derivatives
bearing two (PCBDE-OH) and three (PCBTE-OH) ethylene

glycol units with a terminal hyrodxyl group. Both materials
exhibited higher εr values compared to PCBM and lower Rs for

Figure 3. Capacitance versus frequency plots for (a) P3HT and (c) PCBM films with Al and EGaIn electrodes and (b) and (d) Nyquist and Bode
plots of a P3HT and a PCBM device, respectively, with EGaIn as top electrode. The measured data of the magnitude (|Z|, black squares) and the
phase (blue squares) are plotted against the frequency, while the red lines represent the fit over the measured data. In the inset, the Nyquist
diagram of the device is plotted showing the behavior of a real capacitor.

Figure 4. Capacitance versus frequency plots for (a) PS film with Al and EGaIn electrodes and (b) Nyquist and Bode plots of a PS device with
EGaIn as top electrode. The measured data of the magnitude (|Z|, black squares) and the phase (blue squares) are plotted against the frequency,
while the red lines represent the fit over the measured data. In the inset, the Nyquist diagram of the device is plotted showing the behavior of a real
capacitor.
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the EGaIn devices as can been seen from the Bode and
capacitance plots (see the Supporting Information). The values
of εr = 5.0 ± 0.1 for PCBDE-OH using Al and 5.3 ± 0.1 using
EGaIn. The same trend was found for PCBTE-OH; εr = 5.0 ±
0.1 using Al and 5.2 ± 0.1 using EGaIn. Both materials showed
increased εr compared to PCBM attributed to the OEG chains.
We also examined PCBSF, a fullerene derivative bearing a

sulfone group, which is a small, dipolar group with high dipole
moment (5 D) that was incorporated in the glassy polymer
poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA) to
achieve a value of εr ≈ 12, which is quite high compared to
most organic materials.45 We synthesized PCBSF and
fabricated devices with the different electrodes to investigate
the dielectric properties imparted to small molecules by
sulfones. In this case, devices with different electrodes gave
significantly different numbers for εr: 3.9 ± 0.1 using Al and
5.1 ± 0.1 using EGaIn. After annealing at 170 °C for 6 min
before depositing the electrodes, εr = 5.3 ± 0.1 using Al and
5.4 ± 0.1 using EGaIn, putting them within the same range of
difference as the other materials. To control for the effect of
annealing, we measured all of the materials after annealing and
compared the results. There was no impact on εr for the other
materials, which implies that the effect is related to the
presence of sulfones. Franklin et. al observed an improvement
in the performance of field-effect transistors that use printed
EGaIn contacts after annealing that was strongest when the
annealing step took place before the deposition of EGaIn.46

While it is not possible to draw any firm conclusions from this
comparison, they also speculate that the effect is related to
surface interactions and the interface with EGaIn.
Lastly, we examined another strong polar group that has

attracted some attention as a candidate to increase the
dielectric constant of organic materials, the cyano group. In
polymers, specifically in polyimides, the incorporation of cyano
groups increased ε from 3.1 to 3.8, while in fullerene
derivatives, a series of cyano-functionalized fullerenes exhibited
εr ≈ 4.9.14,15 To explore the effect of the cyano group further,
we synthesized PCBCN (Figure 2). The resulting capacitance
over frequency plots reveal a difference of Rs between devices,
with EGaIn contacts giving lower values together with an
increase in the capacitance at low frequencies. The values of εr
= 4.1 ± 0.1 using Al and 5.1 ± 0.1 using EGaIn.
The results of the dielectric constant measurements are

summarized in Table 1. For the reference materials, P3HT,
PCBM, and PS, the calculated εr for EGaIn was in accordance
with literature values. All of the devices using EGaIn also
showed lower values of Rs, rendering the capacitance

frequency-independent across the experimentally accessible
range. For PCBCF3, both electrodes gave similar εr that were
lower than PCBM, which is expected from the reduced
polarizability of the −CF3 group. Conversely, εr was higher for
OEG-functionalized fullerenes, as expected, with PCBDE-OH
giving slightly higher value using EGaIn compared to Al. Two
compounds, PCBSF and PCBCN, exhibited large differences
in εr between EGaIn and Al. In both cases, the values of εr
were comparable to similar materials (i.e., bearing the same
functional groups), but EGaIn gave values closer to the upper
bounds. The difference in εr vanished upon preannealing the
PCBSF devices, hinting at a morphological effect that is
masked by Al top electrodes. Compounds bearing sulfone
groups tend to be glassy and amphiphilic, which can drive self-
assembly that affects film roughness.47 More studies are
needed to understand these differences completely.
Measurements of εr using EGaIn reproduce the values of PS

and other reference materials, establishing that the differences
between Al and EGaIn observed in devices comprising PCBSF
and PCBCN are not intrinsic to EGaIn. The native Ga2O3
layer does not act as an extra capacitor connected in series with
the circuit in Figure 1a, as can be seen in the impedance plots,
where the Nyquist gives a single semicircle, nor does it add to
Rs, which is systematically lower for EGaIn than Al. This
observation agrees with the hypothesis of Sangeeth et al. that
only a thick layer of Ga2O3 grown electrochemically acts as an
additional real capacitor.35 Differences in the effective and the
geometrical area of the EGaIn, e.g., if EGaIn does not fill the
entire volume of the PDMS channel, are not responsible for
the differences in εr because the capacitance is calculated using
the geometrical area of the channel, A in eq 3, such that εr will
be underestimatedit would be decreased substantially, not
increased.
Having excluded effects specific to using EGaIn top

electrodes immobilized in PDMS, we hypothesize that the
different values of εr between EGaIn and Al top electrodes is
due to the interface between Al and the film. The deposition of
Al requires high temperatures and low vacuum, exposing
delicate organic films to hot (and reactive) metal atoms; vapor
deposition is a violent and energetic process at the molecular
level. While some organic materials tolerate these conditions,
others react with Al and/or Al atoms penetrate into the film to
a significant degree,20 leading to erroneous values of εr. The
deposition of EGaIn, by contrast, is performed at room
temperature, but its shear-yielding rheological properties
ensure that it makes stable, conformal contact regardless of
the topology, reactivity, or fragility of the organic film; X-ray
photoemission spectra of SAMswhich are considerably more
delicate than thin filmsbefore and after electrical inter-
rogation with EGaIn top contacts show no damage.31 Such a
comparison is obviously not possible with Al top contacts.

■ CONCLUSIONS
Because of the nature of IS and the many variables that affect
εr, it is not possible to claim that one electrode material yields
more or less “accurate” values. The vast majority of IS is
performed with Al contacts because Al works well for rigid,
inorganic materials, and traditional alternatives to vapor
deposition are typically laborious and can easily introduce
artifacts (e.g., from trapped water, wrinkles, reactivity, etc.). In
this paper, we demonstrate the use of EGaIn as an alternative
electrode to Al specifically for IS measurements on thin films of
organic materials, with an emphasis on OPV. Electrodes

Table 1. Relative Dielectric Constant Values of Materials
Comparing Aluminum and EGaIn as Top Electrodes

εr ± SE

material Al EGaIn

P3HT 3.3 ± 0.1 3.3 ± 0.1
PS 2.6 ± 0.1 2.7 ± 0.1
PCBM 3.9 ± 0.1 3.9 ± 0.1
PCBCF3 4.2 ± 0.1 4.3 ± 0.1
PCBDE-OH 5.0 ± 0.1 5.3 ± 0.1
PCBTE-OH 5.0 ± 0.1 5.2 ± 0.1
PCBSF 3.9 ± 0.1 5.1 ± 0.1
PCBSF-ann 5.3 ± 0.1 5.4 ± 0.1
PCBCN 4.1 ± 0.1 5.1 ± 0.1
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formed from EGaIn inside microfluidic channels are soft,
conformal, nondamaging, and unreactive and are applied at
room temperature, eliminating many of the sources of
experimental error in the determination of dielectric constants
when using thermally deposited electrodes. Moreover, EGaIn
electrodes do not require specialized equipment, and the
simple design can be incorporated in production lines since the
PDMS blocks used to define the microchannels can be
removed without damaging the organic films; other electrodes
or layers can then be deposited to form a device after
characterizing the dielectric properties, eliminating sample-to-
sample variation. From the Bode plots, EGaIn devices showed
lower values of Rs compared to Al, making the extraction of
capacitance more precise in the measured frequency range.
The values of εr calculated for both electrodes were the same
for the reference materials and the new fullerene derivatives
PCBDE-OH, PCBTE-OH, and PCBCF3, but EGaIn revealed
differences for PCBCN and a sensitivity to annealing (i.e.,
morphology) that was absent using Al. More studies are
needed to understand such subtleties in detail, but the ease of
use and accessibility of EGaIn for IS measurements mean that
it can be readily taken up by the community.
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