89 research outputs found

    In silico examination of peptides containing selenium and ebselen Backbone To Assess Their Tumoricidal Potential

    Get PDF
    Introduction: Cancer has been one of the highest causes of morbidity and mortality in the world for decades. Owing to improved therapeutics along with detection, breast cancer mortality has been slowly reducing. The incidence of breast cancer, on the other hand, has increased gradually. More than 100 types of cancer have been identified with a wide range of treatment protocols comprising of chemotherapy, radiation therapy, hormone therapy, etc. In an attempt to curb the serious deleterious effects caused by the chemotherapeutic drugs, numerous peptide molecules are currently popular as alternatives to the standard chemotherapeutic drugs. Methods: In this study, we have carried out in silico investigations to ascertain the anti-proliferative potential of novel peptides based on selenium and ebselen, i.e. Eb-Trp-Asp, 13, Eb-Trp-Glu, 14, and Eb-Trp-Lys, 15. Analysis of protein-ligand interactions, resulting in protein-ligand complex formation, has been carried out using the AutoDockVina in PyRx aided molecular docking technique, which may be an essential indication of druggability of the test peptides. Results: The molecular docking results revealed that the screened ligands had extraordinarily strong binding interactions and affinity for the target. Conclusion: Findings suggested that novel peptide molecule Eb-Trp-Glu, 14 may be a potent anticancer agent

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    生産增加と貨幣需要

    Get PDF
    We report on two-particle charge-dependent cor- relations in pp, p\u2013Pb, and Pb\u2013Pb collisions as a function of the pseudorapidity and azimuthal angle difference, \u3b7 and \u3c6 respectively. These correlations are studied using the balance function that probes the charge creation time and the develop- ment of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ( pT ) in pp, p\u2013Pb, and Pb\u2013Pb collisions at 1asNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < pT < 2.0 GeV/c, the balance function becomes narrower in both \u3b7 and \u3c6 directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mecha- nisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low pT is a feature of bulk particle production

    Measurement of the production of high-pTp_{\rm T} electrons from heavy-flavour hadron decays in Pb-Pb collisions at sNN\mathbf{\sqrt{\it s_{\rm{NN}}}} = 2.76 TeV

    No full text
    Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb–Pb collisions at a centre-of-mass of energy sNN=2.76 TeV . The transverse momentum ( pT ) differential production yields at mid-rapidity were used to calculate the nuclear modification factor RAA in the interval 3<pT<18 GeV/ c . The RAA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb–Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50–80%) collisions is observed. The suppression of electrons in this broad pT interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb–Pb collisions at LHC

    Relative particle yield fluctuations in  Pb-Pb \text{ Pb-Pb } collisions at sNN=2.76 TeV\sqrt{s_\mathrm{{NN}}} =2.76\hbox { TeV}

    No full text
    First results on K/π\hbox {K}/\pi , p/π\hbox {p}/\pi and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in  Pb-Pb \text{ Pb-Pb } collisions at sNN=2.76 TeV\sqrt{s_\mathrm{{NN}}} =2.76\hbox { TeV} . The observable νdyn\nu _{\mathrm{dyn}} , which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/π\hbox {p}/\pi show a change of sign in νdyn\nu _{\mathrm{dyn}} from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and νdyn\nu _{\mathrm{dyn}} exhibits a change in sign for p/π\hbox {p}/\pi and K/p

    Erratum to: Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at √s = 7 TeV

    No full text
    We have identified a mistake in how Fig. 1 is referenced in the text of the article Eur. Phys. J. C 77 (2017) no. 8, 569 which affected three paragraphs of the results section. The corrected three paragraphs as well as the unmodified accompanying figure are reproduced in this document with the correct labeling. In addition, an editing issue led to a missing acknowledgements section. The missing section is reproduced at the end of this document in the manner in which it should have appeared in the published article

    Searches for transverse momentum dependent flow vector fluctuations in Pb–Pb and p–Pb collisions at the LHC

    No full text
    The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at sNN−−−√= 2.76 TeV and p-Pb collisions at sNN−−−√= 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region |η|<0.8 as a function of centrality and transverse momentum pT using two observables, to search for evidence of pT-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that pT-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Pb-Pb and p-Pb collisions
    corecore