237 research outputs found

    The Deligne-Simpson problem for connections on Gm\mathbb{G}_m with a maximally ramified singularity

    Get PDF
    The classical additive Deligne-Simpson problem is the existence problem for Fuchsian connections with residues at the singular points in specified adjoint orbits. Crawley-Boevey found the solution in 2003 by reinterpreting the problem in terms of quiver varieties. A more general version of this problem, solved by Hiroe, allows additional unramified irregular singularities. We apply the theory of fundamental and regular strata due to Bremer and Sage to formulate a version of the Deligne-Simpson problem in which certain ramified singularities are allowed. These allowed singular points are called toral singularities; they are singularities whose leading term with respect to a lattice chain filtration is regular semisimple. We solve this problem in the important special case of connections on Gm\mathbb{G}_m with a maximally ramified singularity at 00 and possibly an additional regular singular point at infinity. We also give a complete characterization of all such connections which are rigid, under the additional hypothesis of unipotent monodromy at infinity.Comment: 27 pages. Minor correction

    Proceedings of the 2023 Hawk Talks

    Get PDF
    This volume contains the proceedings of the 2023 Hawk Talk Conference held on April 28th at the University of Kansas Edwards Campus in Overland Park, Kansas.The 2023 Hawk Talks Conference features work from students representing a diverse range of programs, including Applied Biological Sciences, American Sign Language and Deaf Studies, Psychology, and Biotechnology. Hawk Talks Conference are opportunities for students to present year-end capstone, honors, and independent research projects. The agenda of talks and poster presentations, abstracts, and short biographies appear for all presenters. Hawk Talks provides a platform for student researchers to come together and share their latest findings and discoveries. This convention serves as a means to stay up-to-date with the latest research taking place on the University of Kansas’ Edwards Campus

    Muscle RING Finger-1 Promotes a Maladaptive Phenotype in Chronic Hypoxia-Induced Right Ventricular Remodeling

    Get PDF
    Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension

    Charge-coupled device imaging of rapid calcium transients in cultured arterial smooth muscle cells

    Full text link
    Transient changes in the concentration of intracellular free calcium are associated with the transduction of primary signals and the subsequent employment of Ca2+ as a second messenger in a multitude of cell types. These transients, typically monitored with the calcium-sensitive fluorescent dye Fura-2, are known to occur with a time course in the order of seconds. In order to accurately monitor such rapid changes in intracellular free calcium concentration in both single cells and simultaneously in several cells in a single field, we have developed a digital fluorescence imaging system based on a charge-coupled device (CCD) camera. We report here on the detailed kinetics of calcium increases in cultured arterial swine smooth muscle cells in response to the agonist ATP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28733/1/0000560.pd

    Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species

    Get PDF
    Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2] than at ambient [O2]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi > 2 mmol P m−2, rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered

    Cytosolic free calcium spiking affected by intracellular pH change

    Full text link
    The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wavelength microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification ([Delta]pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization ([Delta]pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28545/1/0000344.pd

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19:a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    This study was funded by an investigator-initiated research grant from Insmed (Bridgewater, NJ, USA). The authors acknowledge the funding and logistical support from the UK National Institute for Health and Care Research.Background: Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods: In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings: Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57-0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation: Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19.Publisher PDFPeer reviewe

    RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis

    Get PDF
    Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets
    • …
    corecore