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Abstract

Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual
maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that
mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac
bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in
the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type
littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hyperten-
sion. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S)
and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging
with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary
hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and
MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also
similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null
mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure,
even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In
conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular
hypertrophy following CH-induction of pulmonary hypertension.
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Introduction

Right ventricular hypertrophy (RVH) occurs in the setting of

primary pulmonary arterial hypertension (PAH) and frequently

precipitates mortality in this disease [1], with recent estimates of

44% of PAH patients dying from right ventricular failure or

sudden cardiac death [2]. The manifestation of a dilated

hypertrophic phenotype, characterized by a large RV volume

and reduced stroke volume, correlates with an even worse

prognosis [3]. RVH also contributes to mortality as a comorbid

condition in a number of other syndromes, such as chronic

obstructive pulmonary disease and scleroderma [4] [5]. Even

without progressing to frank failure, progressive remodeling of the

RV may generate a substrate for electrocardiographic abnormal-

ities [6], which may contribute to the incidence of sudden cardiac

death [7]. As such, improved understanding of molecular

pathways that contribute to or modify RVH phenotypes may

provide important clues towards novel therapies for PAH

treatment.

Muscle RING finger 1 (MuRF1) is a ubiquitin ligase that

regulates atrophy processes in striated muscle [8–10]. A critical

component to the regulation of muscle mass is the turnover over

and degradation of sarcomere proteins, which MuRF1 has been

reported to ubiquitinate and target for proteasome-mediated

degradation, including cardiac troponin I and beta-Myosin heavy

chain [11,12]. MuRF1 also interacts with a number of other

sarcomere-associated proteins, including myosin light chain 2,

titin, myotilin, and TnT, and may be responsible for the turnover

of these and other yet to be identified proteins [13,14]. However,

the ability of MuRF1 to regulate signal transduction through its

interaction with transcription factors may play a more prominent

role in its regulation of cardiac hypertrophy. For example, in
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ischemia-reperfusion injury, MuRF1 regulates JNK-mediated

apoptosis through its interaction, poly-ubiquitination, and degra-

dation of phosphorylated c-Jun activated by reperfusion [15]. In

pathological cardiac hypertrophy, MuRF1-/- mice undergo an

exaggerated hypertrophy in vivo, suggesting an anti-hypertrophic

activity of MuRF1 [8]. One possible mechanism by which MuRF1

exerts this activity is through its direct interaction with the

transcription factor SRF, which it inhibits without affecting its

protein level [8]. Using MuRF1 Tg mice with increased cardiac

MuRF1 expression, it was shown that MuRF1 acts through the

regulation of creatine kinase activity to alter cellular metabolism

[10]. In models of cardiac atrophy and left ventricular cardiac

hypertrophy reversal, MuRF1 is a critical mediator, as demon-

strated in MuRF1-/- mice, resistant to both processes [9].

In contrast to the left ventricle, the right functions with low-

pressure working conditions and a complex geometry different

from the left ventricle. Despite the more passive role the RV may

appear to play, it is important in the interdependence between left

and right systolic and diastolic function. Pulmonary hypertension,

for example, causes a leftward shift of the interventricular septum

that can negatively affect LV function [16] [17]. Recent studies

have investigated the role of the ubiquitin proteasome system in a

right ventricular hypertrophy model [18]. After induction of PAH

and the development of right ventricular hypertrophy, increased

poly-ubiquitination and free ubiquitin was detected in the hearts

[18]. Given MuRF1’s presence in both the left and right ventricles

and MuRF1’s regulation of LV cardiomyocyte hypertrophy by

multiple mechanisms, we hypothesized that MuRF1 would

regulate right ventricular hypertrophy in vivo. To test this, we

challenged MuRF1-/- and MuRF1 Tg+ mice to hypoxia-induced

pulmonary hypertension to detect the role of MuRF1 in the

compensatory mechanisms of a model of pulmonary artery

hypertension.

Methods

Animal Model
Mice were obtained from colonies whose derivation has been

previously described [8,10] or from a commercial vendor

(C57BL/6 mice from Taconic; Oxnard, CA) and shipped to the

University of New Mexico. Following a week-long quarantine,

mice were moved to a control chamber or normobaric hypoxia

chamber, but maintained in standard shoebox cages with food and

water available ad libitum throughout. The hypoxia chamber was

set at 10.0% oxygen (partial pressure of oxygen roughly 65 mmHg

in Albuquerque) and monitored both by the digital feedback-

control system (Biospherix, Colorado) as well as by a secondary

O2/CO2 monitor (O2Cap, OxiGraf, Inc.; Mountain View, CA).

The hypoxia exposure lasted 3 weeks with twice-weekly cage

changes and standard 12 h light:dark cycle. Procedures were

conducted under full isoflurane anesthesia to minimize or

eliminate risk of pain and discomfort. All procedures were

conducted with full approval by the University of New Mexico

Institutional Animal Care and Use Committee and carried out in

compliance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals.

Single-Photon Emission Computed Tomography
On the final day of hypoxia or normoxia exposures, mice were

slowly injected via a bolus tail vein injection of approximately

0.75 mCi of 201TlCl in 0.9% NaCl, USP for ECG-gated SPECT/

CT assessments of cardiac perfusion, volume and function.

Imaging was conducted at approximately 30 minutes post

injection as previously described [17]. As in this previous work,

RV imaging in normoxic mice was occasionally sub-optimal due

to a large signal from the left ventricle that overwhelmed our

ability to discriminate the RV. For this reason, data for normoxic

mice are frequently pooled to facilitate statistical comparisons. In

hypoxic mice, RV hypertrophy was sufficient to mitigate this

challenge.

Volume and radioactivity concentration were estimated from

3D regions-of-interest (ROIs), including left & right ventricle, left

& right myocardium, entire heart, and fixed-volume lung and

muscle sub-regions, generated using VivoQuant (inviCRO) image

processing software. A flow quantification software FlowQuant

(University of Ottawa, Heart Institute) was used to estimate

cardiac ejection fraction.

Right Ventricular Pressure, Hypertrophy, and Hematocrit
Immediately following the SPECT/CT assessments, mice were

rapidly intubated and artificially ventilated with 2% isoflurane/

balance O2. Under anesthesia, a thoracotomy was performed and

a saline-filled catheter was inserted into the right ventricle. Stable

pressure measurements were obtained for .30 seconds from

which right ventricular systolic, mean, and diastolic pressures were

obtained. Next, blood was rapidly withdrawn into capillary tubes

and spun for hematocrit readings, while the heart was excised and

carefully dissected into right ventricle and left ventricle + septum

to obtain separate weights for derivation of RV/LVS ratios, as

previously described [19].

Quantitative Polymerase Chain Reaction
qPCR was conducted as previously described [20] [21] using a

Roche 480 LightCycler instrument. Primers were obtained from a

commercial vendor (Life Technologies) and shown in Table 1.

Statistics
Considerations for pooling of data were given for normoxia and

WT groups in all scenarios. Where either variation or means were

statistically different, pooling was not conducted. However, for

most endpoints, no differences were observed between WT KO

and WT Tg+ in hypoxic groups or between any strain in

normoxia. A clear exception to this was overall heart weights,

where the Normoxic MuRF1-/- mice had evident cardiac

enlargement compared to most other strains. All data were

examined for assumptions of normal distribution. Data were

routinely compared by 2-factor Analysis of Variance, considering

the roles of hypoxia and genotype, and using a Bonferroni post-

hoc test to explore specific group effects. Probability values of less

than 0.05 were considered significant.

Results

Right ventricular MuRF1 mRNA expression decreases in
response pulmonary hypertension

C57BL/6 mice challenged to chronic hypoxia exhibited

increased right ventricular hypertrophy. Exposure to 10% O2

for 3 weeks resulted in significantly increased right ventricular

systolic pressure, resulting in an increase in right ventricular mass

measured by the Fulton index (RV/LVS; Fig. 1, A and B). BNP

expression was significantly increased in the right ventricle,

consistent with the hypertrophic response observed (Fig. 1C).

The expression of the RV MuRF1 mRNA decreased compared to

normoxic control mice (Fig. 1D).

MuRF1 Modifies RV Remodeling
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Chronic Hypoxia Increases Right Ventricular Pressure and
Hematocrit

Both MuRF1-/-, MuRF1 Tg+, and their respective strain-

matched wild type controls exhibited a statistically equivalent

increase in RV systolic pressure 3 weeks of hypoxia (35.5–

40.7 mm Hg) (Figure 2A, right). The systolic pressure in parallel

normoxia treated mice did not differ between the pooled strain-

matched WT controls, MuRF1 -/-, and MuRF1 Tg+ mice with

mean values of 26.8, 25.6, and 28.5 mmHg, respectively

(Figure 2A, left).

Hematocrit in normoxia-challenged controls was statistically

similar across strains (Figure 2B, left). Hypoxia exposure induced a

predictable increase in hematocrit, with values of 74.3, 77.7 and

80.1 for WT (pooled), MuRF1-/- and MuRF1 Tg+ strains,

respectively, all significantly elevated over normoxic controls.

Interestingly, in response to hypoxia, the MuRF1 Tg+ mice

developed a significantly greater polycythemia than WT hypoxic

mice (P,0.05, 2-way ANOVA with Bonferroni posthoc test). It

should also be noted that we observed two lethalities in the MuRF

Tg+ hypoxia group, one after two weeks and one just prior to

imaging at 3 weeks. Lethality in the 10% O2 exposure is highly

unusual in our experience.

Weight Loss due to hypoxia is attenuated in MuRF1 -/-
mice

Normoxic control mice increased body weight over the 3 week

experimental period, with no differences observed between the

genotypes (Figure 3). WT, MuRF1-/- and MuRF1 Tg+ mice

challenged with hypoxia in parallel underwent significant body

weight, owing to reductions in food and water intake, of roughly

6 g over the first week (Figure 3A). MuRF -/- mice displayed a

significant attenuation in this response compared to wildtype mice

(Figure 3A), while MuRF1 Tg+ tracked consistently with their

respective WT strain (Figure 3B). After one week, both MuRF1-/-

and MuRF1 Tg+ mice undergoing hypoxia treatment stabilized

body weight and consistently increased over the remaining 2

weeks.

Right Ventricular Growth is Enhanced by MuRF1
Deletion, Unaltered by Overexpression

Gravimetric and SPECT/CT assessment of the hearts from

MuRF1 -/- and MuRF1 Tg+ mice challenged with hypoxia for 3

weeks demonstrated a significant right ventricular hypertrophy

compared to all normoxic control groups (Figure 4). As predicted,

hypoxia treatment induced a significant elevation in RV/LVS in

the WT strains (0.37; pooled). MuRF1-/- mice after hypoxia

treated exhibited an exaggerated cardiac hypertrophy, illustrated

by a RV/LVS mean value of 0.48 that was significantly greater

Table 1. Primers used for quantitative PCR.

Gene Name Gene Symbol Primer ID

TATA Box Protein TBP Mm00446971_m1

Muscle RING finger 1 (MuRF1) Trim63 Mm01185221_m1

B-type Natriuretic Peptide (BNP) Nppb Mm01255770_g1

Beta Myosin Heavy Chain (bMHC) Myh7b Mm01249941_m1

Alpha Smooth Muscle Actin Acta2 Mm01546133_m1

NADH-Ubiquinone Oxidoreductase Chain 2 MtND2 Mm04225288_s1

doi:10.1371/journal.pone.0097084.t001

Figure 1. WT C57BL/6 mouse response to hypoxia in terms of right ventricular systolic pressure (A), right ventricular hypertrophy
(B), right ventricular expression of B-type natriuretic peptide mRNA (C) and right MuRF1 mRNA (D). Asterisks denote significant
difference from normoxic controls (p,0.05) by two-tailed t-test (N = 7-8 per group).
doi:10.1371/journal.pone.0097084.g001
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than both WT and MuRF1 Tg+ exposed to hypoxic conditions.

Interestingly, mice with increased cardiac-specific MuRF1 expres-

sion and challenged with hypoxia for 3 weeks had increased right

ventricular growth, rather than inhibited growth, as was expected.

In fact, the MuRF1 Tg+ RV/LVS values (0.42) were significantly

greater than WT, although significantly less than MuRF1-/- mice.

SPECT/CT imaging revealed a pattern of RV growth in MuRF1

Tg+ mice that appeared more dilated than that of WT or

MuRF1-/- mice (Figure 4B).

To quantify the degree of dilation observed in the SPECT/CT

assessment, we compared the gravimetrically-determined mass of

the RV free wall with the SPECT/CT-derived RV chamber

volume, which showed a significant reduction in hypoxia exposed

MuRF1 Tg+ mice relative to all other groups, confirming a dilated

phenotype (Figure 4C). Ejection fractions were also determined on

those subjects for whom adequate ECG-gated images were

collected; notably normoxic mice had smaller RV mass compared

to LV mass, which was a limitation in this study, necessitating

pooling of data for all strains in the normoxia treatment

(Figure 4D). Not only did MuRF1 Tg+ hearts appear dilated

after 3 weeks of hypoxia treatment, they exhibited a significant

decrease in RV ejection fraction compared to normoxic controls

(P,0.05), in contrast to wild type and MuRF1-/- mice, which

were generally unaffected (Figure 4D). Overall systolic and

diastolic volumes in the MuRF1 Tg+ hearts also appeared dilated

compared to MuRF-/- mice (Fig. 4E).

Figure 2. Hemodynamic and Hematologic Responses to Hypoxia in MuRF1 -/- and MuRF1 cardiac Tg+ mice. Chronic normobaric
hypoxia (FiO2 = 0.10) led to predictable increase in right ventricular systolic pressure and hematocrit in WT and MuRF-/- mice, as measured at 21 days
(left). Asterisks denote significant difference from normoxia control groups (P,0.05; N = 5–11 per group). All strains exhibited increases in hematocrit
(N = 5–11 per group, *p,0.001; right).
doi:10.1371/journal.pone.0097084.g002

Figure 3. Body weight response to CH is evident in global MuRF1 -/- mice compared to cardiac-specific MuRF1 Tg+ mice. Longitudinal
weight change profile during chronic hypoxia exposure illustrates global MuRF1 deletion attenuates weight loss with similar gain to WT (A), whereas
MuRF1 Tg+ mice have similar weight loss and gain compared to WT (B). N = 5-6 per group, *p,0.05 from WT.
doi:10.1371/journal.pone.0097084.g003
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MuRF1 and RV expression of pathologic cardiac
hypertrophy markers in response to hypoxia

The expression of mRNA normally found in the fetal heart, but

not adult heart, were identified in mice challenged to hypoxia.

Smooth muscle alpha-actin, myosin heavy chain beta, and BNP

were measured in after 2 weeks of hypoxia challenge (Figure 5).

Cardiac markers of pathologic hypertrophy demonstrated mixed

outcomes related to the hypoxia and genetic factors. Hypoxia

consistently induced RV expression of SM a-actin mRNA, with no

major differences apparent among the strains (Fig. 5A). bMyHC

mRNA did not show a substantial increase in most strains, despite

the hypertrophic findings, but was significantly elevated in MuRF1

Tg+ mice. BNP mRNA was not significantly altered by chronic

hypoxia in the MuRF1-/- mice or their genetic background strain,

but both MuRF1 Tg+ and their background strain showed

significant increases. Lastly, we assessed a marker of mitochondrial

density, MtND2 DNA, which was significantly reduced by chronic

hypoxia in both MuRF1 Tg+ mice and their background strain,

but not in the MuRF1-/- mice or their background strain.

Cardiac and Skeletal Muscle Perfusion
SPECT/CT imaging of 201TlCl was used to assess overall

perfusion of cardiac tissue and a region of skeletal muscle in a

small cohort of exposed mice (Fig. 6A). Again, because the normal

Figure 4. Hypoxia-induced right ventricular remodeling is enhanced by MuRF1 deletion, while cardiac-specific MuRF1
overexpression leads to a maladaptive dilated phenotype. (A) Chronic hypoxia induced predictable increases in RV/LVS, more so in the
MuRF1 -/- mice than in WT. Interestingly, cardiac-specific overexpression of this atrophy-mediating ubiquitin ligase had no protective effect in terms
of net hypertrophy of the right ventricle and in fact led to exacerbation of hypoxia-induced RVH relative to WT (*significantly greater than all control
groups, p,0.01; **significantly greater than all control groups and WT hypoxia, p,0.01; ***significantly greater than all other groups, p,0.01). (B)
Axial SPECT/CT cross-section images obtained at diastole reveal marked hypertrophy of the RV in hypoxia-exposed mice, with the appearance of
dilation in the MuRF1 Tg+ mice. (C) Right ventricular weight to chamber volume ratio (D) ejection fraction and (E) RV systolic and diastolic volumes
determined from ECG-gated SPECT/CT images are shown. As RV wall motion was difficult to image in normoxia mice, all genotypes are pooled.
(N = 3-6 per group; *significantly lower than KO, Hypoxia mice, p,0.05).
doi:10.1371/journal.pone.0097084.g004
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RV is small in comparison to the LV, the normoxic RV was often

difficult to reliably assess. For this reason, data for RV total

perfusion in normoxic mice were pooled across strains in mice that

could be assessed. RV perfusion was significantly elevated in

hypoxia-exposed MuRF1-/- and MuRF1 Tg+ mice compared to

normoxic controls (Fig. 6B). A modest, but non-significant

perfusion increase was seen in hypoxia-exposed WT mice; a

restricted group subanalysis of the hypoxia effect in WT mice by

Student’s t-test revealed a likely effect compared to normoxia-

exposed mice (P = 0.035). When 201TlCl uptake for the whole

heart was calculated, hypoxia as an independent treatment factor

caused a significant increase in perfusion, most pronounced in the

MuRF1-/- and MuRF1 Tg+ mice (Fig. 6C). However, when

skeletal muscle perfusion was analyzed, MuRF1-/- and MuRF1

Tg+ mice trended in opposite directions, with greater skeletal

muscle perfusion seen in MuRF1-/- mice and reduced perfusion in

MuRF1 Tg+ hearts.

Discussion

MuRF1 regulates atrophy of cardiac muscle through the

degradation of structural and regulatory proteins [22]. In the

setting of hypoxia-induced PAH, RV MuRF1 mRNA expression

was downregulated, potentially to permit cellular hypertrophic

responses. The deletion of MuRF1 expectedly led to exaggerated

growth of the right ventricle relative to the left in response to

hypoxia-induced PAH. However, cardiac-specific overexpression

of MuRF1 did not have the opposite effect (i.e., preventing

growth), but rather led to a maladaptive phenotype associated with

wall thinning, lower ejection fraction, and reduced perfusion. We

speculate that selective overexpression of MuRF1 may enhance

degradation and therefore reduce abundance of sarcomeric

proteins, with minimal impact on growth-related signaling for

other cellular components, thus allowing for enlargement of cells

with reduced contractile force. On the other hand, inhibition (or

deletion) of MuRF1 may permit an enhanced contractile

phenotype. The short time frame (3 weeks) of the hypoxia model

limits the conclusions as to the potential positive or negative

implications of the enhanced growth in MuRF1-/- mice, but

increased growth in the presence of adequately compensated

perfusion suggests a beneficial adaptation.

Right ventricular failure is a common and defining outcome in

many forms of pulmonary hypertension [4] [5]. Little research has

been conducted on ride-sided cardiac hypertrophy and failure in

terms of proteolysis and ubiquitin ligase involvement. However, a

great deal is known about left-sided hypertrophy and failure and

the role of MuRF1, specifically. In LV pathologic cardiac

hypertrophy, MuRF1 inhibits pathologic cardiac hypertrophy in

a transaortic constriction (TAC) model without affecting function

[8,10]. However, cardiac-specific overexpression of MuRF1 in the

TAC mode led to eccentric remodeling similar to that seen in the

present study with hypoxia-induced right ventricular remodeling

[9]. MuRF1 regulates the creatine kinase activity in MuRF1 Tg+
hearts and increases susceptibility to TAC-induced heart failure,

while doing little to inhibit cardiac hypertrophy. While much of

this is consistent with the influence of MuRF1 overexpression on

hypoxia-induced right ventricular changes, in the TAC model

mitochondrial numbers were significantly increased in MuRF1

Figure 5. Differential Induction of Cardiac Hypertrophy/Failure Transcripts in MuRF-/- & MuRF1 Tg+ Mice Following CH. Effects of CH-
induced PH on relative RV transcript expression of (A) SM a-actin, (B) MyHC-b, (C) BNP and (D) mtND2 DNA content from MuRF1 -/- and MuRF1 Tg+
mice. BNP, MyHC-b and SM a-actin expression normalized to TATA binding protein. MtND2 DNA content normalized to 18S DNA. N = 5 per group,
*p,0.05 vs respective normoxic control; #p,0.05 vs chronic hypoxia Tg+; **p,0.05 vs respective WT.
doi:10.1371/journal.pone.0097084.g005

MuRF1 Modifies RV Remodeling

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e97084



Tg+ mice, while we observed a reduction in cardiac MtDNA levels

due to hypoxia that was unaffected by MuRF1.

We had previously investigated the roles of MuRF1 and a

related ubiquitin ligase, atrogin-1 or MAFbx, in pulmonary

vascular smooth muscle hypertrophy stemming from pulmonary

hypertension [23]. In the monocrotaline (MCT) model, rat

pulmonary arteries demonstrated significant reductions in atro-

gin-1 expression that tightly followed the timecourse of vascular

hypertrophy and hemodynamic changes. We then used resveratrol

to specifically upregulate atrogin-1, both in whole animal and

vascular smooth muscle cell culture studies, which led to a reversal

of the hypertrophic/hyperplastic phenotype. While off-target

pleiotropic effects of resveratrol cannot be discounted, these

findings motivated further inquiry into the role of ubiquitin ligases

in aspects of PAH. Subsequent studies of MCT found atrogin-1 to

be downregulated in the right ventricle, as well [21]. Interestingly,

MuRF1 is not highly expressed in smooth muscle cells, despite its

prominent role in skeletal and cardiac muscle growth.

Resveratrol was initially used in the MCT model due to our

hypothesis that inducing a caloric restriction phenotype in

myocytes would reduce growth pathways. In cardiac muscle this

might reduce the size of the myocytes, while in smooth muscle it

may also reduce hyperplasia. Pathways upregulated by caloric

restriction, related to AMP kinase and sirtuin signaling, oppose

IGF-1/Akt signaling in cardiomyocytes. AMPK, activated via

caloric restriction or pharmacologically (AICAR), induces MuRF1

and atrogin-1 in cardiomyocytes [24]. Caloric restriction also

maintains elevated levels of skeletal muscle MuRF1 and atrogin-1

[25]. These studies highlight a key involvement of MuRF1 in

energy-saving benefits in scenarios of reduced energy bioavail-

Figure 6. Relative perfusion of right ventricular myocardium, total heart, and skeletal muscle as a reference, as determined by
SPECT/CT using 201TlCl uptake. Region of interest phantoms are depicted in (A). Hypoxia caused a significant increase in perfusion in the RV (B)
of both MuRF1 -/- and MuRF1 Tg+ mice relative to RV mass (N = 5–8 per group; ** denotes p,0.01 compared to normoxia mice by ANOVA). The RV
perfusion was not consistently observable in controls, so results are pooled for all mouse models. The total heart uptake also showed an effect of
hypoxia that was predominant in the MuRF1 -/- and MuRF1 Tg+ mice relative to WT (C). Skeletal muscle perfusion (C) was elevated in hypoxia-exposed
MuRF1 -/-mice but reduced in hypoxia-exposed MuRF1 Tg+ mice. (B,C: N = 5–8 per group; * indicates p,0.05 compared to normoxic conditions for
the same strain; { indicates P,0.05 compared to WT).
doi:10.1371/journal.pone.0097084.g006
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ability or increased metabolic demand, such as in the case of

elevated pulmonary vascular resistance. However, for cardiomy-

ocytes, activating MuRF1 and impeding the matched growth of

contractile components compared to other cellular components

may lead to maladaptive stretching of the myocytes and eccentric

remodeling. Therapeutic interventions that antagonize MuRF-1,

on the other hand, may permit the increased abundance of

contractile proteins and enhance force generation, with the caveat

that failure to remove aging sarcomeric components would soon

lead to negative outcomes.

One interesting observation in this study was that MuRF1-/-

mice were partially protected against the weight loss that occurred

during the mid-to-late phases of the hypoxic exposure (Figure 3).

The present hypoxia model incorporates a weight loss phase that is

a combination of hypoxia and starvation, as the mice decrease

activity and ingest less food and water in the first week of

treatment. Weight loss in this model results in ,6 g decrease in

body weight in wild-type mice. Our findings suggest that MuRF-1

did not affect the initial magnitude of weight loss, which is

consistent with the literature defining this initial period as a lack of

food consumption. In comparable studies, hypoxia-induced weight

loss is directly related to early deficits in food and water

consumption; supplementing hypoxic rats with erythrocytes to

offset reduced oxygen availability did not reduce the initial weight

loss phase [26]. On the other hand, in the later phases of the

hypoxia model the mice are chronically hypoxic and the absence

of MuRF-1 led to a faster recovery of body weight, presumably

muscular weight. Mice deficient in erythropoietin exhibit signif-

icant reductions in hematocrit and muscle oxygenation, which

induces skeletal muscle proteolysis [27]. Rats in a 5-week

hypobaric hypoxia model exhibited increased skeletal muscle

expression of a related ubiquitin ligase, atrogin-1[28]. It may also

be that hypoxia-related inactivity plays an important role, and it

has been documented that MURF1 -/- mice are resistant to

skeletal muscle atrophy in response to a denervation model [29].

It is unknown to what extent these factors (anorexia, hypoxia,

inactivity) may also contribute to the cardiac muscle mass changes

and MuRF1 activity beyond the obvious mechanical stress

incurred by the hemodynamic changes in this PAH model. While

more detailed histopathology and complementary functional

assessments would be ideal, the data from this study strongly

suggests that functionality of the whole heart is better preserved

when MuRF1 is absent and impaired when it is overexpressed

(Figure 6). In human heart failure, skeletal muscle undergoes a

number of atrophic changes, including reduced Akt phosphory-

lation [30], mitochondrial density [31], and cross-bridge kinetics

[32]. In MuRF1-/- mice, systemic perfusion was preserved,

possibly even increased over controls, while the cardiac-specific

MuRF1 overexpression led to reduced skeletal muscle perfusion,

as assessed by SPECT/CT. The recovery of body weight in the

MuRF1-/- mice may relate in part to this preserved cardiac

function, but more detailed studies are needed to define this

phenomenon.

One clear limitation to the present study is the lack of

assessment of pulmonary vascular remodeling and resistance.

Because we did not see clear differences in RVSP or HCT that

would drive the pattern of RV/LVS phenotypes, we believe it is

unlikely that a substantial load-dependent differential was incurred

by the genetic manipulations in this study. MuRF1, unlike its

relative ubiquitin ligase Atrogin-1 (paffet, that uterus study) [21]

[33], does not appear to have an important role in smooth muscle

regulation. Alternatively, one might consider a role for MuRF1 in

response to hypoxia globally. This may in part explain the modest,

significant increase in HCT in the hypoxic MuRF1 Tg+ mice

compared to WT and MuRF1-/- mice, but postulating how a

cardiac-specific overexpression of MuRF1 drives an increased

erythropoeitic response would be challenging. Perhaps more

compelling argument relates to the reduced perfusion in the

failing heart of hypoxic MuRF1 Tg+ mice, which leads to reduced

perfusion of kidneys and increased erythropoeitic signaling.

In summary, MuRF1 plays an important role in modulating the

degree and quality of hypertrophic manifestations resulting from

the hypoxia-induced PAH model. The overexpression of MuRF1

led to an eccentric and maladaptive hypertrophy, while deletion of

MuRF1 permitted greater hypertrophy without a loss of function.

While we foresee a limited and biphasic benefit, there may be a

strategic therapeutic opportunity to antagonize MuRF1 to allow

for improved growth of the RV to match elevated pulmonary

arterial resistance. A better understanding of MuRF1 and overall

proteasomal function in cardiac hypertrophic may enable inter-

ventions for modifying chronic hypertrophic remodeling towards a

more benign outcome.
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