174 research outputs found

    Abundance and survival rates of the Hawai’i Island associated spinner dolphin (Stenella longirostris) stock

    Get PDF
    Reliable population estimates are critical to implement effective management strategies. The Hawai’i Island spinner dolphin (Stenella longirostris) is a genetically distinct stock that displays a rigid daily behavioural pattern, foraging offshore at night and resting in sheltered bays during the day. Consequently, they are exposed to frequent human interactions and disturbance. We estimated population parameters of this spinner dolphin stock using a systematic sampling design and capture–recapture models. From September 2010 to August 2011, boat-based photo-identification surveys were undertaken monthly over 132 days (>1,150 hours of effort; >100,000 dorsal fin images) in the four main resting bays along the Kona Coast, Hawai’i Island. All images were graded according to photographic quality and distinctiveness. Over 32,000 images were included in the analyses, from which 607 distinctive individuals were catalogued and 214 were highly distinctive. Two independent estimates of the proportion of highly distinctive individuals in the population were not significantly different (p = 0.68). Individual heterogeneity and time variation in capture probabilities were strongly indicated for these data; therefore capture–recapture models allowing for these variations were used. The estimated annual apparent survival rate (product of true survival and permanent emigration) was 0.97 SE±0.05. Open and closed capture–recapture models for the highly distinctive individuals photographed at least once each month produced similar abundance estimates. An estimate of 221±4.3 SE highly distinctive spinner dolphins, resulted in a total abundance of 631±60.1 SE, (95% CI 524–761) spinner dolphins in the Hawai’i Island stock, which is lower than previous estimates. When this abundance estimate is considered alongside the rigid daily behavioural pattern, genetic distinctiveness, and the ease of human access to spinner dolphins in their preferred resting habitats, this Hawai’i Island stock is likely more vulnerable to negative impacts from human disturbance than previously believed

    Evaluating monitoring methods for cetaceans

    Get PDF
    With increasing human pressures on wildlife comes a responsibility to monitor them effectively, particularly in an environment of declining research funds. Scarce funding resources compromise the level and efficacy of monitoring possible to detect trends in abundance, highlighting the priority for developing cost-effective programs. A systematic and rigorous sampling regime was developed to estimate abundance of a small, genetically isolated spinner dolphin (Stenella longirostris) population exposed to high levels of human activities. Five monitoring scenarios to detect trends in abundance were evaluated by varying sampling effort, precision, power, and sampling interval. Scenario 1 consisted of monthly surveys, each of 12 days, used to obtain the initial two consecutive annual abundance estimates. Scenarios 2, 3, and 4 consisted of a reduced effort, while Scenario 5 doubled the effort of Scenario 1. Scenarios with the greatest effort (1 and 5) produced the most precise abundance estimates (CV = 0.09). Using a CV = 0.09 and power of 80%, it would take 9 years to detect a 5% annual change in abundance compared with 12 years at a power of 95%. Under this best-case monitoring scenario, if the trend was a decline, the population would have decreased by 37% and 46%, respectively, prior to detection of a significant decline: With the potential of a large decline in a small population prior to detection, the lower power level should be used to trigger a management intervention. The approach presented here is applicable across taxa for which individuals can be identified, including terrestrial and aquatic mammals, birds, and reptiles

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801−-2304 of approximately 160 \rad at an elongation of 0.95∘^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393μG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Blown Jet Vortex Generator Control of a Separated Diffuser Flow

    Full text link

    Isotope Effect for the Penetration Depth in Superconductors

    Full text link
    We show that various factors can lead to an isotopic dependence of the penetration depth δ\delta. Non-adiabaticity (Jahn-Teller crossing) leads to the isotope effect of the charge carrier concentration nn and, consequently, of δ\delta in doped superconductors such as the cuprates. A general equation relating the isotope coefficients of TcT_c and of δ\delta is presented for London superconductors. We further show that the presence of magnetic impurities or a proximity contact also lead to an isotopic dependence of δ\delta; the isotope coefficient turns out to be temperature dependent, β(T)\beta(T), in these cases. The existence of the isotope effect for the penetration depth is predicted for conventional as well as for high-temperature superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Yeast Two-Hybrid: State of the Art

    Get PDF
    Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore