246 research outputs found

    Rules of engagement promote polarity in RNA trafficking

    Get PDF
    Many cell biological pathways exhibit overall polarity (net movement of molecules in one direction) even though individual molecular interactions in the pathway are freely reversible. The A2 RNA trafficking pathway exhibits polarity in moving specific RNA molecules from the nucleus to localization sites in the myelin compartment of oligodendrocytes or dendritic spines in neurons. The A2 pathway is mediated by a ubiquitously expressed trans-acting trafficking factor (hnRNP A2) that interacts with a specific 11 nucleotide cis-acting trafficking sequence termed the A2 response element (A2RE) found in several localized RNAs. Five different molecular partners for hnRNP A2 have been identified in the A2 pathway: hnRNP A2 itself, transportin, A2RE RNA, TOG (tumor overexpressed gene) and hnRNP E1, each playing a key role in one particular step of the A2 pathway. Sequential interactions of hnRNP A2 with different molecular partners at each step mediate directed movement of trafficking intermediates along the pathway. Specific "rules of engagement" (both and, either or, only if) govern sequential interactions of hnRNP A2 with each of its molecular partners. Rules of engagement are defined experimentally using three component binding assays to measure differential binding of hnRNP A2 to one partner in the presence of each of the other partners in the pathway. Here we describe rules of engagement for hnRNP A2 binding to each of its molecular partners and discuss how these rules of engagement promote polarity in the A2 RNA trafficking pathway. For molecules with multiple binding partners, specific rules of engagement govern different molecular interactions. Rules of engagement are ultimately determined by structural relationships between binding sites on individual molecules. In the A2 RNA trafficking pathway rules of engagement governing interactions of hnRNP A2 with different binding partners provide the basis for polarity of movement of intermediates along the pathway

    FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death.

    Get PDF
    Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Get PDF
    Abstract Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline

    Legitimacy in REDD+ governance in Indonesia

    Get PDF
    This paper addresses the question of legitimacy in REDD+ governance in Indonesia. It develops a legitimacy framework that builds on elements of Scharpf (J Eur Pub Policy 4(1):18–36, 1997) input and output legitimacy concept and the political economy lens described by Brockhaus and Angelsen (Analysing REDD+: Challenges and choices, CIFOR, Bogor, 2012). Using data collected through key informant interviews and focus groups, we identify and explore stakeholder perceptions of legitimacy. The analysis reveals a complex interplay between input and output legitimacy, finding that state, non-state and hybrid actors perceive output legitimacy (i.e. project outcomes) as highly dependent on the level of input legitimacy achieved during the governance process. Non-state actors perceive proxies for input legitimacy, such as participation and inclusion of local people, as goals in themselves. In the main, they perceive inclusion to be integral to the empowerment of local people. They perceive output legitimacy as less important because of the intangibility of REDD+ outcomes at this stage in the process. The findings also highlight the challenges associated with measuring the legitimacy of REDD+ governance in Indonesia

    Enantioselective Protein-Sterol Interactions Mediate Regulation of Both Prokaryotic and Eukaryotic Inward Rectifier K+ Channels by Cholesterol

    Get PDF
    Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket

    MRC chronic Dyspnea Scale: Relationships with cardiopulmonary exercise testing and 6-minute walk test in idiopathic pulmonary fibrosis patients: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exertional dyspnea is the most prominent and disabling feature in idiopathic pulmonary fibrosis (IPF). The Medical Research Chronic (MRC) chronic dyspnea score as well as physiological measurements obtained during cardiopulmonary exercise testing (CPET) and the 6-minute walk test (6MWT) are shown to provide information on the severity and survival of disease.</p> <p>Methods</p> <p>We prospectively recruited IPF patients and examined the relationship between the MRC score and either CPET or 6MWT parameters known to reflect physiologic derangements limiting exercise capacity in IPF patients</p> <p>Results</p> <p>Twenty-five patients with IPF were included in the study. Significant correlations were found between the MRC score and the distance (r = -.781, p < 0.001), the SPO<sub>2 </sub>at the initiation and the end (r = -.542, p = 0.005 and r = -.713, p < 0.001 respectively) and the desaturation index (r = .634, p = 0.001) for the 6MWT; the MRC score and <it>V</it>O<sub>2 </sub>peak/kg (r = -.731, p < 0.001), SPO<sub>2 </sub>at peak exercise (r = -. 682, p < 0.001), VE/VCO<sub>2 </sub>slope (r = .731, p < 0.001), VE/VCO<sub>2 </sub>at AT (r = .630, p = 0.002) and the Borg scale at peak exercise (r = .50, p = 0.01) for the CPET. In multiple logistic regression analysis, the only variable independently related to the MRC is the distance walked at the 6MWT.</p> <p>Conclusion</p> <p>In this population of IPF patients a good correlation was found between the MRC chronic dyspnoea score and physiological parameters obtained during maximal and submaximal exercise testing known to reflect ventilatory impairment and exercise limitation as well as disease severity and survival. This finding is described for the first time in the literature in this group of patients as far as we know and could explain why a simple chronic dyspnea score provides reliable prognostic information on IPF.</p

    Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K

    Get PDF
    Background: The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression. Methodology/Principal Findnigs: Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression. Conclusions/Significance: Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. © 2012 Zhou et al.published_or_final_versio
    corecore