598 research outputs found

    Frequency Domain Simulations of Charge-Density-Wave Strains: Comparison with Electro-Optic Measurements

    Full text link
    We have studied changes in charge-density-wave strain under application of square-wave currents of variable amplitude and frequency by numerically solving the phase-slip augmented diffusion model introduced by Adelman et al (Phys. Rev. B 53, 1833 (1996)). The frequency dependence of the strain, at each position and amplitude, was fit to a modified harmonic oscillator expression, and the position and current dependence of the fitting parameters determined. In particular, the delay time (1/resonant frequency) vanishes adjacent to the contact and grows with distance from the contact, and both the delay time and relaxation time decrease rapidly with increasing current (and phase-slip rate), as experimentally observed in the electro-optic response of blue bronze. We have also found that pinning the phase at the contacts causes more rapid changes in strain between the contacts than allowing the phase to flow outside the contacts.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    From nonassociativity to solutions of the KP hierarchy

    Full text link
    A recently observed relation between 'weakly nonassociative' algebras A (for which the associator (A,A^2,A) vanishes) and the KP hierarchy (with dependent variable in the middle nucleus A' of A) is recalled. For any such algebra there is a nonassociative hierarchy of ODEs, the solutions of which determine solutions of the KP hierarchy. In a special case, and with A' a matrix algebra, this becomes a matrix Riccati hierarchy which is easily solved. The matrix solution then leads to solutions of the scalar KP hierarchy. We discuss some classes of solutions obtained in this way.Comment: 7 pages, 4 figures, International Colloquium 'Integrable Systems and Quantum Symmetries', Prague, 15-17 June 200

    Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions

    Full text link
    Tunneling conductance spectra between a normal metal / d-wave superconductor junction under the presence of bulk impurities in the superconductor are studied. The quasiclassical theory has been applied to calculate the spatial variation of the pair potential and the effect of impurity scattering has been introduced by t-matrix approximation. The magnitude of a subdominant s-wave component at the interface is shown to robust against the impurity scattering while that for a subdominant dxyd_{xy}-wave component is largely suppressed with the increase of the impurity scattering rate. The zero-bias conductance peak due to the zero-energy Andreev bound states is significantly broadened for the case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Quasiclassical description of transport through superconducting contacts

    Full text link
    We present a theoretical study of transport properties through superconducting contacts based on a new formulation of boundary conditions that mimics interfaces for the quasiclassical theory of superconductivity. These boundary conditions are based on a description of an interface in terms of a simple Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary conditions reproduce results obtained by conventional quasiclassical boundary conditions, or by boundary conditions based on the scattering approach. This formalism is well suited for the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias voltage. This approach is illustrated with the calculation of Josephson currents through a variety of superconducting junctions ranging from conventional to d-wave superconductors, and to the analysis of supercurrent through a ferromagnetic nanoparticle. The calculation of the current-voltage characteristics and of noise is applied to the case of a contact between two d-wave superconductors. In particular, we discuss the use of shot noise for the measurement of charge transferred in a multiple Andreev reflection in d-wave superconductors

    A phenomenological theory of zero-energy Andreev resonant states

    Full text link
    A conceptual consideration is given to a zero-energy state (ZES) at the surface of unconventional superconductors. The reflection coefficients in normal-metal / superconductor (NS) junctions are calculated based on a phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is observed as the zero-bias conductance peak (ZBCP) in the differential conductance of NS junctions. The split of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also discuss effects of external magnetic fields on the ZBCP.Comment: 12 page

    Avalanche Dynamics in Evolution, Growth, and Depinning Models

    Full text link
    The dynamics of complex systems in nature often occurs in terms of punctuations, or avalanches, rather than following a smooth, gradual path. A comprehensive theory of avalanche dynamics in models of growth, interface depinning, and evolution is presented. Specifically, we include the Bak-Sneppen evolution model, the Sneppen interface depinning model, the Zaitsev flux creep model, invasion percolation, and several other depinning models into a unified treatment encompassing a large class of far from equilibrium processes. The formation of fractal structures, the appearance of 1/f1/f noise, diffusion with anomalous Hurst exponents, Levy flights, and punctuated equilibria can all be related to the same underlying avalanche dynamics. This dynamics can be represented as a fractal in dd spatial plus one temporal dimension. We develop a scaling theory that relates many of the critical exponents in this broad category of extremal models, representing different universality classes, to two basic exponents characterizing the fractal attractor. The exact equations and the derived set of scaling relations are consistent with numerical simulations of the above mentioned models.Comment: 27 pages in revtex, no figures included. Figures or hard copy of the manuscript supplied on reques

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP

    Get PDF
    Promptly decaying lightest neutralinos and long-lived staus are searched for in the context of light gravitino scenarios. It is assumed that the stau is the next to lightest supersymmetric particle (NLSP) and that the lightest neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of the production of these particles is found. Hence, lower mass limits for both kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is found to be greater than 71.5 GeV/c^2. In the search for long-lived stau, masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10 to 150 \eVcc . Combining this search with the searches for stable heavy leptons and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc may be set for the stau mas

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore