45 research outputs found

    Risk Prediction Models for Head and Neck Cancer in the US Population from the INHANCE Consortium

    Get PDF
    Head and neck cancer (HNC) risk prediction models based on risk factor profiles have not yet been developed. We took advantage of the large database of the International Head and Neck Cancer Epidemiology (INHANCE) Consortium, including 14 US studies from 1981-2010, to develop HNC risk prediction models. Seventy percent of the data were used to develop the risk prediction models; the remaining 30 were used to validate the models. We used competing-risk models to calculate absolute risks. The predictors included age, sex, education, race/ethnicity, alcohol drinking intensity, cigarette smoking duration and intensity, and/or family history of HNC. The 20-year absolute risk of HNC was 7.61 for a 60-year-old woman who smoked more than 20 cigarettes per day for over 20 years, consumed 3 or more alcoholic drinks per day, was a high school graduate, had a family history of HNC, and was non-Hispanic white. The 20-year risk for men with a similar profile was 6.85. The absolute risks of oropharyngeal and hypopharyngeal cancers were generally lower than those of oral cavity and laryngeal cancers. Statistics for the area under the receiver operating characteristic curve (AUC) were 0.70 or higher, except for oropharyngeal cancer in men. This HNC risk prediction model may be useful in promoting healthier behaviors such as smoking cessation or in aiding persons with a family history of HNC to evaluate their risks

    Alcohol drinking and head and neck cancer risk: the joint effect of intensity and duration

    Get PDF
    Background: Alcohol is a well-established risk factor for head and neck cancer (HNC). This study aims to explore the effect of alcohol intensity and duration, as joint continuous exposures, on HNC risk. Methods: Data from 26 case-control studies in the INHANCE Consortium were used, including never and current drinkers who drunk ≤10 drinks/day for ≤54 years (24234 controls, 4085 oral cavity, 3359 oropharyngeal, 983 hypopharyngeal and 3340 laryngeal cancers). The dose-response relationship between the risk and the joint exposure to drinking intensity and duration was investigated through bivariate regression spline models, adjusting for potential confounders, including tobacco smoking. Results: For all subsites, cancer risk steeply increased with increasing drinks/day, with no appreciable threshold effect at lower intensities. For each intensity level, the risk of oral cavity, hypopharyngeal and laryngeal cancers did not vary according to years of drinking, suggesting no effect of duration. For oropharyngeal cancer, the risk increased with durations up to 28 years, flattening thereafter. The risk peaked at the higher levels of intensity and duration for all subsites (odds ratio = 7.95 for oral cavity, 12.86 for oropharynx, 24.96 for hypopharynx and 6.60 for larynx). Conclusions: Present results further encourage the reduction of alcohol intensity to mitigate HNC risk

    Lessons learned from the INHANCE consortium: An overview of recent results on head and neck cancer

    Get PDF
    Objective: To summarize the latest evidence on head and neck cancer epidemiology from the International Head and Neck Cancer Epidemiology (INHANCE) consortium. Subjects and Methods: INHANCE was established in 2004 to elucidate the etiology of head and neck cancer through pooled analyses of individual-level data on a large scale. We summarize results from recent INHANCE-based publications updating our 2015 overview. Results: Seventeen papers were published between 2015 and May 2020. These studies further define the nature of risks associated with tobacco and alcohol, and occupational exposures on head and neck cancer. The beneficial effects on incidence of head and neck cancer were identified for good oral health, endogenous and exogenous hormonal factors, and selected aspects of diet related to fruit and vegetables. INHANCE has begun to develop risk prediction models and to pool follow-up data on their studies, finding that ~30% of cases had cancer recurrence and 9% second primary cancers, with overall- and disease-specific 5-year-survival of 51% and 57%, respectively. Conclusions: The number and importance of INHANCE scientific findings provides further evidence of the advantages of large-scale internationally collaborative projects and will support the development of prevention strategies

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Trends in hydrogen chemisorption on transition metals

    No full text
    corecore