134 research outputs found

    Photon-axion conversion in intergalactic magnetic fields and cosmological consequences

    Get PDF
    Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic standard candles such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of Lecture Notes in Physics (Springer-Verlag) on Axion

    WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant

    Full text link
    We present observational constraints on a scalar-tensor gravity theory by χ2\chi^2 test for CMB anisotropy spectrum. We compare the WMAP temperature power spectrum with the harmonic attractor model, in which the scalar field has its harmonic effective potential with curvature β\beta in the Einstein conformal frame and the theory relaxes toward Einstein gravity with time. We found that the present value of the scalar coupling, i.e. the present level of deviation from Einstein gravity (α02)(\alpha_0^2), is bounded to be smaller than 5×1047β5\times 10^{-4-7\beta} (2σ2\sigma), and 1027β10^{-2-7\beta} (4σ4\sigma) for 0<β<0.450< \beta<0.45. This constraint is much stronger than the bound from the solar system experiments for large β\beta models, i.e., β>0.2\beta> 0.2 and 0.3 in 2σ2\sigma and 4σ4\sigma limits, respectively. Furthermore, within the framework of this model, the variation of the gravitational constant at the recombination epoch is constrained as G(z=zrec)G0/G0<0.05(2σ)|G(z=z_{rec})-G_0|/G_0 < 0.05(2\sigma), and 0.23(4σ)0.23(4\sigma).Comment: 7 page

    Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field

    Full text link
    We have succeeded in establishing a cosmological model with a non-minimally coupled scalar field ϕ\phi that can account not only for the spatial periodicity or the {\it picket-fence structure} exhibited by the galaxy NN-zz relation of the 2dF survey but also for the spatial power spectrum of the cosmic microwave background radiation (CMB) temperature anisotropy observed by the WMAP satellite. The Hubble diagram of our model also compares well with the observation of Type Ia supernovae. The scalar field of our model universe starts from an extremely small value at around the nucleosynthesis epoch, remains in that state for sufficiently long periods, allowing sufficient time for the CMB temperature anisotropy to form, and then starts to grow in magnitude at the redshift zz of 1\sim 1, followed by a damping oscillation which is required to reproduce the observed picket-fence structure of the NN-zz relation. To realize such behavior of the scalar field, we have found it necessary to introduce a new form of potential V(ϕ)ϕ2exp(qϕ2)V(\phi)\propto \phi^2\exp(-q\phi^2), with qq being a constant. Through this parameter qq, we can control the epoch at which the scalar field starts growing.Comment: 19 pages, 18 figures, Accepted for publication in Astrophysics & Space Scienc

    Effect of lead acetate on Sertoli cell lactate production and protein synthesis in vitro

    Full text link
    The effects of lead acetate on protein synthesis and lactate production by cultures of rat Sertoli cells in vitro were studied. Sertoli cell cultures prepared from 20 day old Sprague-Dawley rats were exposed to 0.01, 0.05 and 0.10 mM lead acetate. Lactate production was significantly elevated by all concentrations of lead after 3, 6, 9 and 12 hours of exposure. Protein biosynthesis as measured by [ 3 H]-leucine incorporation was significantly depressed by 0.05 and 0.10 mM lead acetate after 2 hours of exposure. These results support the hypothesis that lead acetate may inhibit spermatogenesis by a disturbance of the metabolic activities of the Sertoli cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42549/1/10565_2004_Article_BF00122696.pd

    Big Bang Baryogenesis

    Full text link
    An overview of baryogenesis in the early Universe is presented. The standard big bang model including big bang nucleosynthesis and inflation is breifly reviewed. Three basic models for baryogenesis will be developed: The ``standard" out-of-equilibrium decay model; the decay of scalar consensates along flat directions in supersymmetric models; and lepto-baryogenesis, which is the conversion of a lepton asymmetry into a baryon asymmetry via non-perturbative electroweak interactions.Comment: 36 pages, LaTeX, UMN-TH-1249, Lectures given at the 33rd International Winter School on Nuclear and Particle Physics, ``Matter Under Extreme Conditions", Feb. 27 - March 5 1994, Schladming Austri

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore