170 research outputs found

    Megabank found? Flanks record sea level

    Get PDF
    On Leg 101, the first international voyage for the Ocean Drilling Program, the deep-sea drilling ship JOIOES Resolution (SEDCO/BP 471) left Miami, Fla., on Jan. 31 to investigate the geology of the Bahamas. (Leg 100 tested the Resolution's readiness. See July Geotimes.) Before returning to Miami on March 14, the crew had drilled 19 holes al 11 sites and recovered 46.2% of the cored section (about 1.5 of 3.1 km cored). The scientific party wanted to test conflicting hypotheses about the development of the modern shallow water carbonate banks and intervening deep -water throughs in the Bahamas, and to study the growth patterns of carbonate slopes and their response to sea-level fluctuations. Those objectives (the 'deep ' and the 'shallow') were selected beause recent advances in interpreting the micropaleontology of shallow-water carbonate platforms, coupled with data from previous sedimentological investigations and regional and site-specific seismic surveys, now permit consistent stratigraphic comparisons in the Bahamas

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    Exceptional preservation of palaeozoic steroids in a diagenetic continuum

    Get PDF
    The occurrence of intact sterols has been restricted to immature Cretaceous (~125 Ma) sediments with one report from the Late Jurassic (~165 Ma). Here we report the oldest occurrence of intact sterols in a Crustacean fossil preserved for ca. 380 Ma within a Devonian concretion. The exceptional preservation of the biomass is attributed to microbially induced carbonate encapsulation, preventing full decomposition and transformation thus extending sterol occurrences in the geosphere by 250 Ma. A suite of diagenetic transformation products of sterols was also identified in the concretion, demonstrating the remarkable coexistence of biomolecules and geomolecules in the same sample. Most importantly the original biolipids were found to be the most abundant steroids in the sample. We attribute the coexistence of steroids in a diagenetic continuum-ranging from stenols to triaromatic steroids-to microbially mediated eogenetic processes

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    Modelling and Analysing Genetic Networks: From Boolean Networks to Petri Nets

    Full text link
    Abstract. In order to understand complex genetic regulatory networks researchers require automated formal modelling techniques that provide appropriate analysis tools. In this paper we propose a new qualitative model for genetic regulatory networks based on Petri nets and detail a process for automatically constructing these models using logic mini-mization. We take as our starting point the Boolean network approach in which regulatory entities are viewed abstractly as binary switches. The idea is to extract terms representing a Boolean network using logic minimization and to then directly translate these terms into appropri-ate Petri net control structures. The resulting compact Petri net model addresses a number of shortcomings associated with Boolean networks and is particularly suited to analysis using the wide range of Petri net tools. We demonstrate our approach by presenting a detailed case study in which the genetic regulatory network underlying the nutritional stress response in Escherichia coli is modelled and analysed.

    Testing statistical significance scores of sequence comparison methods with structure similarity

    Get PDF
    BACKGROUND: In the past years the Smith-Waterman sequence comparison algorithm has gained popularity due to improved implementations and rapidly increasing computing power. However, the quality and sensitivity of a database search is not only determined by the algorithm but also by the statistical significance testing for an alignment. The e-value is the most commonly used statistical validation method for sequence database searching. The CluSTr database and the Protein World database have been created using an alternative statistical significance test: a Z-score based on Monte-Carlo statistics. Several papers have described the superiority of the Z-score as compared to the e-value, using simulated data. We were interested if this could be validated when applied to existing, evolutionary related protein sequences. RESULTS: All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman sequence comparison algorithm with both e-value and Z-score statistics is evaluated, using ROC, CVE and AP measures. The BLAST and FASTA algorithms are used as reference. We find that two out of three Smith-Waterman implementations with e-value are better at predicting structural similarities between proteins than the Smith-Waterman implementation with Z-score. SSEARCH especially has very high scores. CONCLUSION: The compute intensive Z-score does not have a clear advantage over the e-value. The Smith-Waterman implementations give generally better results than their heuristic counterparts. We recommend using the SSEARCH algorithm combined with e-values for pairwise sequence comparisons

    Boolean dynamics revisited through feedback interconnections

    Get PDF
    Boolean models of physical or biological systems describe the global dynamics of the system and their attractors typically represent asymptotic behaviors. In the case of large networks composed of several modules, it may be difficult to identify all the attractors. To explore Boolean dynamics from a novel viewpoint, we will analyse the dynamics emerging from the composition of two known Boolean modules. The state transition graphs and attractors for each of the modules can be combined to construct a new asymptotic graph which will (1) provide a reliable method for attractor computation with partial information; (2) illustrate the differences in dynamical behavior induced by the updating strategy (asynchronous, synchronous, or mixed); and (3) show the inherited organization/structure of the original network’s state transition graph.publishe

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively
    corecore