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Boolean dynamics revisited through feedback interconnections
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Abstract

Boolean models of physical or biological systems describe the global dynamics of the
system and their attractors typically represent asymptotic behaviors. In the case of large
networks composed of several modules, it may be difficult to identify all the attractors. To
explore Boolean dynamics from a novel viewpoint, we will analyse the dynamics emerging
from the composition of two known Boolean modules. The state transition graphs and
attractors for each of the modules can be combined to construct a new asymptotic graph
which will (1) provide a reliable method for attractor computation with partial informa-
tion; (2) illustrate the differences in dynamical behavior induced by the updating strategy
(asynchronous, synchronous, or mixed); and (3) show the inherited organization/structure
of the original network’s state transition graph.

Keywords: Boolean models, feedback interconnections, attractor computation, asyn-
chronous vs. synchronous updates

1 Introduction

The effect of network topology in a system’s dynamics and stability has long been a problem
of interest [26, 12, 13]. In the presence of very large networks of interaction with uncertain
knowledge or data involving large maps of activation/inactivation effects, Boolean models with
their qualitative On/Off description, provide a practical framework to analyse and model such
data [45, 36]. Therefore, it is very useful to develop new techniques to analyse and render
Boolean models more realistic (software [27, 1], asynchronous analysis [5, 17, 40], probabilistic
approaches [37, 39], or stochastic approaches [31]).

A Boolean network is defined by a set of logical rules and a strategy for generating the
dynamics, such as synchronous or asynchronous updates, or intermediate combinations [43, 21].
The state transititon graph and its dynamics depend not only on the network topology but
also on the updating strategy. In fact, different modes of update encompass fundamentally
distinct hypotheses regarding the dynamics of the network, and lead to distinct dynamical
behavior and attractors [12, 13]. Synchronous updates are commonly used but they assume
simultaneous timescales for all phenomena, and typically generate cyclic attractors which have
no biological meaning. Asynchronous updates are arguably more realistic, consider different
timescales for the variables in the system, but they have the disadvantage of involving high
calculation costs to obtain the state transition graph for large networks (for instance, those
containing above 20 vertices).
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The study of large networks, in particular the computation of its steady states and at-
tractors, remains a hard problem. Several algorithms have been proposed to determine the
singletons in a Boolean network, using approaches such as constrained programming [14], SAT
formulas for special classes of functions [2], or partitioning the system into smaller networks [23].
Using computational algebra, [42] construct a very cost-efficient algorithm to compute all sin-
gletons in a Boolean network. Finding cyclic attractors is an even more complex task and
generally needs computation of the successors of all states (typically unfeasible for networks
above 20 vertices), or at least the evaluation of certain partial states [24]. The notion of seeds,
for representing dynamically closed subspaces, is used in [28, 29] to aproximately compute at-
tractors of a network. A new network reduction method in [44] was shown to be very effective
for computation of all types of attractors. Another approach, also based on network partition-
ing, was proposed by Chaves & Tournier [8, 9, 40]: this uses a control theory framework to
represent a large network as the feedback interconnection between two or more modules and is
guaranteed to find not only the singletons but actually all the attractors of the large network,
under asynchronous updates.

Some of these methods can be very efficient for analysis of large networks [44, 42], but our
aim is to study an algorithm that allows to link together two known models and observe how the
new dynamics emerges from each of the two network’s attractors. Feedback interconnections
are a widely used concept in control theory [38] and essentially mean that two systems with
outputs and inputs may be composed into a large system by connecting each system’s output
to the input of the other system. Interconnection algorithms are especially relevant in physical
and biological sciences, when the aim is to understand the behavior of a large system in terms
of its different parts, such as the interactions between metabolic and genetic networks [4], or
between two fundamental biological modules such as the cell cycle and circadian clock [22]).
Simultaneously, new disciplines like synthetic biology aim at the construction of synthetic
“biological bricks” that perform a well defined function [34] and can then be assembled together.
In this context, the behavior of a system must be analysed in the light of its interactions with
other systems (the question of retroactivity [41] may arise), and the study of large networks
as the interconnection of one or more smaller modules gains full significance.

The goal of this paper is to revisit the dynamical analysis of Boolean networks in the light of
modular feedback interconnections. In particular, the following perspectives will be analysed:
(i) develop an algorithm allowing to compute the attractors and asymptotic dynamics for
the composition of (already known) networks (see Sections 3, 4, and 5); (ii) understand the
dynamical behavior of a network as the feedback interconnection of two modules; gain insight
on the structure and organization of the whole state space (see Section 2) and its dependence
on the updating strategy. The method proposed in [8, 40] is based on the computation of a
new object, the asymptotic graph, a directed graph whose vertices are the products of attractors
of the two (or more) modules that constitute the Boolean network and the edges are computed
from the state transition graphs of these modules. This method is guaranteed to recover all
the attractors of the large network (Section 3) but, for very particular cases, new spurious
attractors may also be generated. Here, we will first show how to extend this method to avoid
spurious attractors (Section 3.2). Second, we will show how to compute an asymptotic graph
in the case of synchronous (Section 4) or mixed updating strategies (Section 5). Finally, several
examples of interconnections of biological systems will be analyzed to illustrate our methods
(Section 7).
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2 Boolean module feedback interconnections and useful nota-
tion

Our objective is to study the dynamics of Boolean networks and their asymptotic behavior, as
emergent properties of the interactions between two smaller separate networks. Throughout
this paper, we would like to answer the following questions: How are the pathways constructed,
in a Boolean network composed of different modules? How to compute the attractors of the
large network, depending on updating strategies?

Here, the focus is on synchronous versus asynchronous strategies, the comparison of their
respective dynamical properties, and implications for the computation of the network’s path-
ways and attractors.

Our approach is based on the representation of a Boolean network as the feedback intercon-
nection of two separate Boolean modules. In fact, in physical and biological systems, a larger
network is often constructed by putting together smaller, already known modules. To connect
the modules, entry nodes and outgoing variables are needed, so we will start by introducing
input/output Boolean modules (a notion which is common in control theory [38], for instance).

An input/output Boolean module ΣX = (ΩX , UX , HX , fX , hX), with nX state variables, pX
input variables, and qX output variables is characterized by:

• state space, ΩX = {0, 1}nX ,

• input space UX = {0, 1}pX ,

• output space HX = {0, 1}qX ,

• set of Boolean rules fX : ΩX × UX → ΩX ,

• output function hX : ΩX → HX .

For each u ∈ UX , the synchronous successor of state x ∈ ΩX is given by x+ = fX(x;u) and
the output associated to this state is y = hX(x).

Given two such modules, ΣA and ΣB, we will use the objects above with subscript A or
B and the notation a ∈ ΩA, b ∈ ΩB for the states of each module. Assuming without loss
of generality that pA = qB and pB = qA, a larger network can be formed by connecting the
input of one system to the output of the other system, i.e., uA = hB(b) and uB = hA(a). The
feedback interconnection of the two modules is defined as the system without outputs or inputs
ΣI = (ΩI , FI) with ΩI = {0, 1}nA+nB , states x = (a, b) and:

FI := ΩI → ΩI , FI(x) = FI(a, b) = (fA(a;hB(b)), fB(b;hA(a))), (1)

in other words, the synchronous sucessor of x = (a, b) is x+ = (a+, b+) with a+ = fA(a;hB(b))
and b+ = fB(b;hA(a)). The dynamical behavior of Boolean model ΣI (either synchronous or
asynchronous) can be fully described by a state transition graph, GI , which can in turn be
represented by a 2nI × 2nI matrix. The asymptotic behavior of the network is given by the
attractors of GI , which are sets of states from which trajectories cannot escape.

In the case of large networks (eg., nI > 20), the exact computation of the graph GI becomes
very costly and not feasible in practice. Hence, we propose to characterize the dynamical
behavior of ΣI from the behavior of the two individual modules ΣA and ΣB, by constructing
a new object called the asymptotic graph, Ga. This new graph is based on a much smaller
number of vertices and is less costly to compute. To do this we will first compute their state
transition graphs denoted by GA,u, one for each input u ∈ UA and GB,v, for each v ∈ UB.
These graphs can be constructed either for the asynchronous or synchronous strategies (see
Sections 3 and 4, respectively).
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Figure 1: A dynamical system ΣI viewed as the feedback interconnection of two modules ΣA

and ΣB.

2.1 Basic definitions and notation

Some notions used through the text are now recalled (see, for instance, [15]). A directed graph,
G = (V, E) is defined by a set of vertices, V and a set of directed edges, E , where a directed
edge is a pair of ordered vertices, V1 → V2.

A directed graph is strongly connected if any pair of vertices in V is connected by a path
(where a path is a sequence of distinct edges V1 → V2 → · · ·Vi). Any directed graph G can be
organized into strongly connected components (SCCs), where an SCC is a maximal strongly
connected subgraph of G. An SCC can contain either a single vertex or a subset of vertices
(it can also contain the full graph). An SCC C can have incoming or outgoing pathways, that
is a pathway from (or towards) a vertex V /∈ C. An SCC without any outgoing pathways is
called an attractor. In other words, when a trajectory reaches an attractor it remains inside for
all subsequent updating times and, therefore, distinct attractors represent distinct asymptotic
behaviors of the system.

The set of attractors of a given graph G is denoted A(G). The reachable set of a vertex
a in G, R(a;G), is the set of all vertices ã such that there exists a path connecting a to ã in

G, a
G
; ã. The reachable set of a subset S ⊂ V in G is the union R(S;G) = ∪a∈SR(a;G).

Conversely, the basin of attraction of A ∈ A(G) in G, B(A;G), is the set of all vertices a such

that there exists a path connecting it to A in G, a
G
; A.

For a system ΣX with input ν, the state transition graph is a directed graph, denoted
by GX,ν = (ΩX , EX) where the set of edges is computed from the Boolean rules fX and
the updating strategy. To facilitate notation, ν takes values in lexicographic order, i.e., ν ∈
{1, 2, . . . , 2pX} where “1 = 0 . . . 00”,“2 = 0 . . . 01”, and “2pX = 11 · · · 1”.

For each module ΣX , the state transition graphs GX,ν will have LX,ν ≥ 1 attractors denoted
Xi
ν . To avoid introducing heavy notation, we will use a ∈ Aiu (or b ∈ Bj

v) to name the elements
of GA,u (or GB,v) contained in each attractor.

Table 1 summarizes the notation used for the state transition graphs and attractors for
different modules and updating strategies.

2.2 A working example

To illustrate our methodology and the differences generated by the three updating strategies,
consider the interconnection between two modules, one negative loop and one double-negative
loop:

ΣA : a+
1 = ¬a2, a+

2 = ¬u ∧ ¬a1, hA(a) = (a1, a2)′,

ΣB : b+1 = v1 ∧ ¬b2, b+2 = ¬v2 ∧ b1, hB(b) = b2, (2)
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Table 1: Summary of notation used throughout the paper to name state transition graphs.
Three updating strategies will be compared for the analysis of the interconnection of two
Boolean modules. These yield different transition graphs for each module and for the full net-
work and asymptotic graphs. In the mixed strategy, the modules are synchronously updated.
In general, a subscript ∗ will be used for asynchronous updates, mx will be used for a mixed
strategy, and no subscript for synchronous updates. To avoid an overcharged notation, the
semi-attractors are similarly labeled for both asynchronous and synchronous updates, but this
is usually clear from the context.

Updates Modules Full network Asymptotic graph
graphs semi-attractors graph attractors graph attractors

Synchronous GA,u,GB,v Aiuα,Bj
vβ GI Qk Ga Qa,k

Mixed GA,u,GB,v Aiuα,Bj
vβ GImx Qkmx Gamx Qa,kmx

Asynchronous GA,u∗ ,GB,v∗ Aiuα,Bj
vβ GI∗ Qk∗ Ga∗ Qa,k∗

where NA = NB = 2, pA = qB = 2, pB = qA = 1. The interconnected system ΣI is obtained
by setting

u = b2, v1 = a1, v2 = a2. (3)

The state transition graphs under an asynchronous or a synchronous strategy are shown in
Fig. 2. The graphs Ga or GI will be constructed throughout the following sections.

(a) (b)

Figure 2: The state transition graphs for modules ΣA and ΣB of (2), using (a) asynchronous
or (b) synchronous updates.

3 The asynchronous asymptotic graph method for attractor
computation

Once the attractors of all the transition graphs are known, a new object will be constructed,
called the asymptotic graph, Ga∗, a graph where the vertices are basically all products of at-
tractors of the form Aiu×B

j
v and the edges are computed based on the transition graphs GA,u∗

and GB,v∗ . The Ga∗ = (V∗, E∗) is constructed differently depending on the updating strategy
and is next detailed. Note that this method can be generalized to the interconnection between
three or more modules by appropriately defining input and output functions (see [40]). For
simplicity, we will discuss only the interconnection between two modules.
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The main results in this paper establish that there is a correspondence between A(Ga∗) and
A(GI∗) which depends on the updating strategy.

The asymptotic graph for asynchronous updates was first proposed in [8] and then further
studied in [40, 6]. This Section briefly reviews the main results.

3.1 Step-by-step construction

The asynchronous strategy consists in changing exactly one coordinate at each time step.
More precisely, fix u, for each state compute x+ = fX(x;u) and define the set of indices whose
coordinates change:

I(x;u) = {i : x+
i − xi 6= 0}.

Then, the possible asynchronous successors of x in GX,u∗ are:

y(x;u) ∈ {x̂ : x̂i = 1− xi, for some i ∈ I(x;u), x̂j = xj , j 6= i}.

Step 1: Construct the set of vertices V∗ The first step of the asympotic graph method is
to divide each attractor of the modules into subsets of states that have the same output. These
are called semi-attractors of the modules and are defined as follows. Given Aı̄u ∈ A(GA,u∗ ) and
B ̄
v ∈ B(GB,v∗ ), define:

Aiuα = {a ∈ Aı̄u : hA(a) = bool(α)}
Bj
vβ = {b ∈ B ̄

v : hB(b) = bool(β)},

where the superscripts i, j range over the total number of semi-attractors for the module (over
all inputs), i ∈ {1, . . . , LA∗ }, j ∈ {1, . . . , LB∗ }. (Note that i and ı̄ are not related but we have
u = u(i) and α = α(i); we drop these dependences to simplify notation. A similar observation
holds for j.) The subscripts range over v, α ∈ {1, . . . , 2pB} and u, β ∈ {1, . . . , 2pA}, and bool(ν)
denotes the Boolean representation of integer ν. Observe that some of the semi-attractors may
be empty and are neglected. As an example, the counting of semi-attractors for system (2) is
given in (6) below.

The vertices of Ga∗ are the cross-products of non-empty semi-attractors:

V∗ = {Aiuα ×B
j
vβ : i = 1, . . . , LA∗ , j = 1, . . . , LB∗ }, (4)

where LA∗ and LB∗ are the total number of semi-attractors for modules A and B (respectively),
under asynchronous updates (and the dependences u = u(i),α = α(i),v = v(j),β = β(j) are
omitted for simplicity).

Step 2: Construct the set of edges E∗ To satisfy an asynchronous updating strategy,
each edge corresponds to the update of a single module, i.e., only the a (or b) variables are
allowed to change at each edge. Accordingly, only edges of the following form are considered

Aiuα ×B
j
vβ → Aiuα ×B

̃

αβ̃
or Aiuα ×B

j
vβ → Aı̃βα̃ ×B

j
vβ (5)

such that one of the modules is fixed at a semi-attractor, while the dynamics of the other
module evolves: in the first case, the semi-attractor of GA,u∗ is fixed while the dynamics of ΣB

follows the path(s) of Bj
vβ along the graph with input v = α, GB,α∗ . Therefore, there is an edge

between the two vertices if there is a path in the graph GB,α∗ that leads from some state in
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Bj
vβ to some state in B ̃

αβ̃
. Similarly for an edge Aiuα × B

j
vβ → Aı̃βα̃ × B

j
vβ. The set of edges

can be written:

E∗ = {(V,W ) ∈ V∗ : V = Aiuα ×B
j
vβ and (W = Aiuα ×B

̃

αβ̃
or W = Aı̃βα̃ ×B

j
vβ) },

where Aı̃βα̃ is in the reachable set of Aiuα in the graph GA,β∗ and B ̃

αβ̃
is in the reachable set of

Bj
vβ in the graph GB,α∗ .

Step 3: Attractor computation In the asynchronous case, A(Ga∗) contains a representa-
tive of each of the attractors of GI∗ as was shown in [8, 40]:

Theorem 1 [8] In the case of asynchronous networks, if Q∗ is an attractor of GI∗, then there
exists at least one corresponding attractor in Ga∗, Q

a
∗ = Qa∗(Q∗). Moreover, if Q1

∗ 6= Q2
∗ are two

distinct attractors of GI∗, then Qa,1∗ (Q1
∗) 6= Qa,2∗ (Q2

∗).

Therefore, all the attractors of the asynchronous GI∗ can be obtained from the attractors
of Ga∗. However, it may happen that some of the attractors of Ga∗ are not true attractors of
GI∗, also called “spurious” attractors. The formation of such attractors is illustrated with the
mixed updating strategy (Section 5).

(a) (b)

Figure 3: (a) The asynchronous asymptotic graph and (b) the full network state transition
graph for the interconnection of modules ΣA and ΣB in (2).

Example For the network (2), the corresponding asynchronous graphs GA,u∗ and GB,u∗ are
shown in Fig. 2(a) and the sets of semi-attractors are:

A(GA,1∗ ) : A1
12 = {01}, A2

13 = {10}
A(GA,2∗ ) : A3

23 = {10}
A(GB,1∗ ) : B1

11 = {00} (6)

A(GB,2∗ ) : B2
21 = {00}

A(GB,3∗ ) : B3
31 = {00, 10}, B4

32 = {01, 11}
A(GB,4∗ ) : B5

41 = {10}.

All semi-attractors are also true attractors, except for B3
31 and B4

32 each containing the states

with same output of the attractor {00, 01, 10, 11} of GB,3∗ . There are thus 3× 5 = 15 vertices
in V∗, corresponding to all possible products of semi-attractors Aiuα and Bj

vβ.
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To compute the edges according to (5) consider the vertex A3
23 × B5

41, for instance, which
has three outgoing edges. First, fix the part A3

23, which is “forcing” system ΣB with input

3; hence we need to compute the successor of B5
41 = {10} in the state transition graph GB,3∗ .

This graph contains a cyclic attractor, divided into two semi-attractors (see Fig. 2(a)) so
trajectories of system ΣB cycle between these two, B3

31 and B4
33. This gives the two edges

A3
23 ×B5

41 → A3
23 ×B3

31 and A3
23 ×B5

41 → A3
23 ×B4

32.
Second, fix the part B5

41 which is forcing system ΣA with input 1; the only successor of

state A3
23 = {10} in GA,1∗ is A2

13 = {10}.vThis gives an edge A3
23 ×B5

41 → A2
13 ×B5

41.
In this way, obtain the asymptotic graph shown in Fig. 3(b), which has two attractors:

Qa,1∗ = {A1
12 ×B2

21} = {0100}
Qa,2∗ = {A2

13 ×B3
31, A

2
13 ×B4

32, A
3
23 ×B3

31, A
3
23 ×B4

32} = {1000, 1010, 1001, 1011}.

Comparison with GI∗ (Fig. 3(a)) shows that the asymptotic graph exactly recovers the two
attractors of the full interconnected system, as expected.

3.2 Extending the asynchronous asymptotic graph, Gext
∗

In the case of the asynchronous asymptotic graph, to improve its construction and avoid the
generation of spurious attractors, the idea is to extend the vertex set V∗ to include further
components. This new set will be called V̄∗ and the new asymptotic graph is denoted Gext∗ .

An analysis of asynchronous asymptotic graphs with failures shows that spurious attractors
may appear due to output changes along the pathways followed by the states of an attractor
Aiu in a state transition graph GA,ũ∗ with ũ 6= u (see the Example in Section 5). These pathways
and the corresponding sequence of outputs “forgotten” in the construction of Ga∗ (which keeps
only the final state of the pathway, by definition).

To identify the appropriate new components, the idea is to analyze the pathways of each
state of each attractor Xi

ν along the other partial graphs GX,ν̃∗ , with ν̃ 6= ν, until a change in
the output is detected, as follows (for clarity, the case of module X = A will be described):

(i) Compute the strongly connected components (SCCs) of each state transition graph GA,u∗
and its terminal SCCs (or attractors). Collect its attractors in Au = {Aiu : i =
1, . . . , LA,u}.

(ii) Pick an attractor Aiu, suppose it contains the states {r1, . . . , rk}, and look at all the
possible forward pathways for each r` in the other graphs GA,ũ∗ with ũ 6= u, for instance,

P`1 : r` → s1 → s2 → · · · , in GA,ũ∗ ,

Along each path, each state has its own output hA(si).

(iii) For each pathway P`k of each state r`, pick the first state sı̂ that has a different output
from r`, that is hA(sı̂) = α̃ 6= hA(r`) = α.

(iv) This state sı̂ belongs to some strongly connected component Su of the graph GA,u∗ . Add
this SCC to the set of attractors: Au = Au ∪ {Su}.

Repeat steps (i)-(iv) for all u ∈ {1, . . . , 2pA} and then for module B, for all v ∈ {1, . . . , 2pB},
to produce the extended sets Au and Bv. The next step is to divide each component of
these sets into semi-SCCs with the same output: Āiuα = {a ∈ Āı̄u : hA(a) = bool(α)} and
B̄j
vβ = {b ∈ B̄ ̄

v : hB(b) = bool(β)}. Collecting all the semi-SCCs into:

SA = {Āiuα : i = 1, . . . , L̄A}, SB = {B̄j
vβ : j = 1, . . . , L̄B},
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the set of vertices for the extended asynchronous asymptotic graph is thus:

V̄∗ = {Āiuα × B̄
j
vβ : i = 1, . . . , L̄A, j = 1, . . . , L̄B}.

The new set of edges Ē∗ is computed as before (5).
To test this method, we applied it to 750 randomly generated pairs of modules. The modules

have NA = NB ∈ {2, 3, 4, 5, 6} and inputs pA = pB ∈ {1, 2, 3}. Each module was obtained by
randomly generating the Boolean truth tables for GX,ν∗ , ν ∈ {1, . . . , 2pX}. The results obtained
with this extended method (Fig. 4) indicate that the spurious attractor problem is solved for
about 99.8% of the cases. However, the new Gext∗ is still not exact and it is much larger to
calculate, since |Gext∗ | > |GI∗|, except for modules with dimension above NX = 6.

These results also suggest that the addition of other SCCs to the sets SA and SB will further
improve the asymptotic graph. For instance, by successively adding the SCCs corresponding
to a second or third change of output along the pathways P`k .

Indeed, this joins the result shown in [40] for another graph construction, called the cross-
graph, Gcr: this graph is contructed from all pairs of all SCCs of GX,ν∗ . A theorem shows
that there is a bijection between the attractors of Gcr and GI∗ (i.e. Gcr recovers exactly all
attractors of GI∗). This is not surprising, since Gcr virtually contains all states of GI∗.

The difficulty is that Gcr (and possibly other extensions of Gext∗ ) is as costly to compute
as the graph GI∗ itself, so it is not an efficient method for large networks. Nevertheless, the
successive constructions Ga∗, G

ext
∗ ,..., Gcr provide a clear illustration of the organization of

asynchronous dynamical behavior.

Figure 4: Performance of the extended asymptotic graph method for asynchronous networks
(darker curves, Gext) and comparison with original method (lighter curves, Ga∗), for randomly
generated modules, and interconnected networks with pA = 1, 2, 3. Left: the percentage of
failure (i.e., the generation of spurious). Right: the sizes of both asymptotic graphs relative to
the size of the full network GI∗.

4 The synchronous asymptotic graph, Ga

To construct the asymptotic graph in the synchronous case, one could follow a similar reasoning
and define the edges of the asymptotic graph by asking that both the a and b states change
simultaneously:

(Aiuα, B
j
vβ)→ (Aı̃βα̃, B

̃

αβ̃
).
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However, a few examples showed that this strategy may not only generate spurious attractors
(as in the asynchronous case), but also miss finding some of the attractors of the synchronous
GI . This is therefore not a favorable strategy for constructing a synchronous asymptotic graph.

To improve the construction and guarantee some result, the asymptotic graph can be
constructed according to an iterative procedure, as follows.

Step 1: Construct the set of vertices W The initial set of vertices is V, constructed as
in the asynchronous case (4). Then, given a set of nodes Wk, compute their direct successors
according to (1) to form Wk+1:

W0 := {Aiuα ×B
j
vβ : i = 1, . . . , LA, j = 1, . . . , LB},

Wk+1 := {W : W = (a+, b+), for (a, b) ∈ V, all V ∈ Wk} \ (∪k`=0W`) (7)

where LA, LB are the total number of semi-attractors of modules A and B (respectively) under
synchronous updates, and a+ = fA(a;hB(b)) and b+ = fB(b;hA(a)). (Since the state space is
finite there will eventually be some k̂ such thatWk̂ = ∅.) The set of nodes for the synchronous
asymptotic graph Ga is then:

W = ∪k̂−1
k=0 Wk. (8)

Step 2: Construct the set of edges E The set of edges is based on synchronous updates:

E = {(V,W ) ∈ W : V = (a, b) and W = (a+, b+), V,W ∈ W}. (9)

As a last remark, in theory, the graph Ga may be as long to compute as the full graph GI .
This is however not the case in practice (see examples below).

Step 3: Attractor computation In the synchronous case, since Ga is a subgraph of GI ,
all attractors of Ga are guaranteed to be true attractors of GI . It may, however, happen that
not all attractors of the full network are recovered, in contrast to the asynchronous case.

Theorem 2 In the case of synchronous networks, if Qa is an attractor of Ga, then Qa contains
an attractor of GI .

Proof: Let Qa be an attractor of Ga and let B(Qa) represent its basin of attraction. Then,
by definition of the synchronous asymptotic graph, there is at least one element of ΩI of the
form V = (Aiuα, B

j
vβ) ∈ B(Qa) (since the set of vertices of Ga contains W0, (7)). Again, by

definition of the synchronous asymptotic graph, all reachable states from V in GI , R(V ;GI),
are also contained in W and, namely, Qa contains the attractor corresponding to the path in
R(V ;GI). In other words, Qa contains an attractor of GI .

Example For the network (2), the synchronous transition graphs GA,u and GB,u are shown
in Fig. 2(b) and the sets of semi-attractors are:

A(GA,1) : A1
11 = {00}, A2

14 = {11}, A3
12 = {01}, A4

13 = {10}
A(GA,2) : A5

23 = {10}
A(GB,1) : B1

11 = {00} (10)

A(GB,2) : B2
21 = {00}

A(GB,3) : B3
31 = {00, 10}, B4

32 = {01, 11}
A(GB,4) : B5

41 = {10}.

10



(a) (b)

Figure 5: (a) The synchronous asymptotic graph and (b) the full network state transition
graph for the interconnection of modules ΣA and ΣB in (2).

All semi-attractors are also true attractors, except for two pairs A1
11 ∪ A2

14 = {00, 11} and
B3

31∪B4
32 = {00, 01, 10, 11} organized into same-output semi-attractors. There are thus 5×5 =

25 vertices in V. According to the iterative procedure (7), the following four vertices need to
be added: 00× 00, 00×B2

21, A2
14× 01, A5

23× 01. Fig. 5(a), represents depicts the synchronous
asymptotic graph which has three attractors:

Qa,1 = A3
12 ×B2

21 = {0100}
Qa,2 = {A1

11 ×B5
41, A

2
14 × 01, A2

14 ×B1
11, 00× 00} = {0000, 0010, 1100, 1101},

Qa,3 = {A4
13 ×B4

32, A
5
23 ×B3

31} = {1000, 1010, 1001, 1011}.

Comparison with GI (Fig. 5(b)) shows that the synchronous asymptotic graph exactly recovers
the attractors of the full interconnected system.

5 The asymptotic graph, for mixed strategy networks, Ga
mx

The results in Sections 3 and 4 suggest a natural application of the asymptotic graph method
for mixed-strategy networks. Assume that a network ΣM with graph GImx is synchronous in
blocks, for instance composed of two groups of variables, x = (a, b), and within each group
a1, . . . , ak or b1, . . . , b` the variables are synchronously updated. The choice to update either
group a or group b is according to an asynchronous strategy.

To apply the asymptotic graph method, it is intuitive to partition the network into two
modules, each containing one of the synchronous blocks of variables. For each module com-
pute the synchronous graphs GX,u and their corresponding attractors A(GX,u). Using these
attractors, construct the asymptotic graph as in the asynchronous case, Gamx = (Vmx, Emx).

Then, the attractors of Gamx will contain (a representative of) all attractors of GImx:
A(Gamx) ⊃ A(GImx). Intuitively, this is because the attractors of GX,u represent each basin of
attraction of each of the synchronous blocks.

To facilitate the analysis, we now introduce a projection function, π : A(GX,u) → ΩX

which returns all the states contained in a given attractor of GX,u and a grouping function,
ψ : A(GImx)→ Vmx, which returns all the vertices of Gamx “contained” in an attractor of GImx:

ψ(Q) = {(Auα, Bv,β) ∈ Vmx : (a, b) ∈ Q where a ∈ π(Auα), b ∈ π(Bv,β)}.

The equivalent of Theorem 1 for a mixed block-synchronous strategy can now be stated. The
proof follows the same argument as in [8].
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Theorem 3 If Q is an attractor of GImx, then ψ(Q) contains an attractor of Gamx.

Proof: Let (a, b) ∈ Q with a a vertex of ΣA and b a vertex of ΣB. Let α = hA(a), β = hB(b)
and consider the attractors Aβα0 , Bαβ0 such that a ∈ B(Aβα0 ;GA,β), b ∈ B(Bαβ0 ;GB,α).

Part (a). First, show that ψ(Q) is not empty: by the block-synchronous strategy, we have
R(a;GA,β)× {b} ⊂ Q and also {a} ×R(b;GB,α) ⊂ Q, which implies Aβα0 ×Bαβ0 ∈ ψ(Q).

Part (b). To show that ψ(Q) contains an attractor of Gamx, it suffices to show that ψ(Q)
contains all successors of its elements (in Gamx). So let Auα × Bvβ ∈ ψ(Q). By definition
of the mixed-mode asymptotic graph, its successors are of the form Aβα1 × Bvβ or Auα ×
Bαβ1 . But, if (a0, b0) ∈ π(Auα) × π(Bvβ) then also (a0, b0) ∈ Q and, from Part (a), we have
R(a0;GA,β)×{b0} ⊂ Q and also {a0}×R(b0;GB,α) ⊂ Q. But this implies Aβα1 ×Bvβ ∈ ψ(Q)
and Auα ×Bαβ1 ∈ ψ(Q), as wanted.

(a) (b)

Figure 6: (a) The mixed updates asymptotic graph and (b) the full network state transition
graph for the interconnection of modules ΣA and ΣB in (2).

Example Suppose that the two modules ΣA and ΣB given in (2) are both synchronously
updated, but their interconnection is asynchronous. To construct the asymptotic graph Gamx,
use the synchronous modules transition graphs GX,u shown in Fig. 2(b) and then construct the
asymptotic graph using an asynchronous strategy. In this case, the sets of semi-attractors are
the same as in the synchronous case (10), so that V has 5× 5 = 25 vertices in Gamx. Fig. 6(a),
The mixed strategy asymptotic graph has three attractors:

Qa,1mx = {A3
12 ×B2

21} = {0100},
Qa,2mx = {A1

11 ×B1
11, A

1
11 ×B5

41, A
2
14 ×B1

11, A
2
14 ×B5

41} = {0000, 0010, 1100, 1110},
Qa,3mx = {A4

13 ×B3
31, A

4
13 ×B4

32, A
5
23 ×B3

31, A
5
23 ×B4

32} = {1000, 1010, 1001, 1011}.

However, Fig. 5(b) shows that the full network GImx has only two attractors, corresponding
to Qa,1mx and Qa,3mx. It follows that Qa,2mx is a spurious attractor, which does not correspond to
any true attractor of GImx. To understand the origin of this spurious result, compare the edges
linking the following equivalent vertices in GImx and Gamx:

0010 0000
↘ ↑

0001
↓

1001

A1
11 ×B5

41 → A1
11 ×B1

11

↑
A1

11 ×B4
32

↓
A5

23 ×B4
32

12



and note that the edge A1
11 × B5

41 → A1
11 × B4

32 is not allowed in Gamx, by definition (see
edge rule (5)). Note also that 0010 → 0001 → 1001 is the only pathway in GImx that allows
transitions from the states in set Qa,2mx to those in set Qa,3mx. The definition of the edges of Gamx
together with the lack of redundancy among pathways in GImx originates a spurious attractor
in Gamx.

As before, this result can be extended to the interconnection between 3 or more syn-
chronous blocks. Furthermore, if the strategy among blocks is asynchronous, it is clear that
each block could follow any updating strategy, since only its state transition graphs GX,u,
u ∈ {1, 2, . . . , 2pX}, are needed to construct the asymptotic graph.

6 The synchronous vs. asynchronous dynamics dichotomy

The different dynamics induced by synchronous or asynchronous updating strategies is well
illustrated through the construction of the asymptotic graphs.

In practice, we can compute all or most of the attractors of the interconnected network
using only the knowlegde of the two individual modules, through the computation of a new
graph of (much) reduced dimension, the asymptotic graph. Each strategy – either updating
all variables simultaneouly or only one at a time – leads to a different construction for the
asymptotic graph and to two apparently opposite results:

A(GI) ⊇ A(Ga), A(GImx) ⊆ A(Gamx), A(GI∗) ⊆ A(Ga∗).

In asynchronously interconnected networks, it appears that the information on the asymp-
totic behavior is completely included in the state transition graphs of the two separate modules,
and this for any possible pair of modules. The asymptotic graph scheme may sometimes in-
troduce a false attractor. Roughly speaking, the asynchronous nature of the dynamics is
reminiscent of a slow/fast timescale separation, since each part of an attractor (either the A
or B part) is fixed while the other part evolves rapidly inside its own module: the dynamics
within each module is “fast” when compared to the timescale of the interconnection. Thus, the
asynchronous asymptotic graph contains one representative of each family of pathways leading
to any given attractor. In some particular cases, the families of pathways are not adequately
represented in Ga∗, thereby leading to the appearance of a spurious attractor as illustrated by
the example in Section 5.

In contrast, in synchronously interconnected networks, by construction the asymptotic
graph contains actual pathways of GI (those starting from an initial choice of vertices, W0), so
it cannot introduce any spurious attractors. In synchronous networks, each state has a unique
successor and converges to a single attractor. The basins of attraction are pairwise disjoint and
deterministically associated with a unique attractor. So, in general, the attractors associated
to a pair of modules ΣA, ΣB for ΣI may not sample appropriately all the basins of attraction,
hence some attractors of GI will be “forgotten” in Ga. This is the case even in straigthforward
networks such as the positive loop of size n ≥ 4.

This difference in the structure of asynchronous and synchronous networks joins the work
of Demongeot and colleagues [13] who have analysed the basins of attraction of synchronous
networks, their sizes and the distances between them, as indicators of robustness. A small dis-
tance between two basins of attraction means that perturbations to an initial configuration are
more likely to induce a switch from one basin to another, and hence to change the asymptotic
behavior of the network.

The main disadvantage of the asymptotic graph construction is the possibility of generating
spurious attractors in the case of asynchronous updates, or the failure to recover all attractors

13



Figure 7: Performance of the asymptotic graph method for synchronous (blue curves), mixed
(black curves), or asynchronous (red curves) interconnected networks. We considered two
classes of networks: Horn Boolean functions (left column) and unate cascade functions (right
column). For each class and eachNA, 500 networks were generated, formed by a pair of modules
of equal size NA = NB ∈ {3, 4, 5, 6, 7} and Nin = 2. For the three strategies, the corresponding
full graphs and asymptotic graphs were computed. The plots compare percentage of failures
(top) and the sizes of the asymptotic graph relative to the size of the full network, |Ga|/|GI |
(bottom).
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under synchronous updates. However, our tests with randomly generated networks show that
these errors are very small and decrease with size for networks with some structure (below 2%,
see Figure 7) and applications to biological networks modules has never shown any of these
two “errors”.

A quick comparison of the three stategies is shown in Figure 7. Two classes of Boolean
functions were considered: unate cascade functions as characterized in [25], and Horn functions
as characterized in [11], for n variables:

Unate cascades: f(x) = x̂σ(1) �1
(
x̂σ(2) �2

(
. . .
(
x̂σ(n−1) �n−1 x̂σ(n)

)
. . .
))
,

Horn functions: f(x) =

m∨
i=1

∧
j∈Pi

xj
∧
k∈Qi

¬xk


where σ is a permutation of {1, . . . , n}, x̂ is either x or ¬x, and �i represents either the logical
AND or the logical OR; for Horn functions 1 ≤ m ≤ 6, 0 ≤ |Pi| ≤ n and 0 ≤ |Qi| ≤ 1, that is,
each term in a Horn function has at most one negated variable. To generate Horn functions,
the integers m, |Pi|, and |Qi| were randomly chosen out of a uniform distribution in the given
intervals. To obtain unate cascade functions, a permutation and a sequence of n − 1 logical
operations were randomly generated from uniform distributions. For the computation of each
of the three asymptotic graphs for each class, A total of 500 × 5 networks were randomly
generated as pairs of modules with NA = NB ∈ {3, 4, 5, 6, 7} and Nin = 2, for each class
(each symbol corresponds to an average over 500 networks). For each of these networks, we
computed the three asymptotic graphs and the full interconnected graph and compared the
attractors. It is immediate to observe that the asynchronous strategy gives the most accurate
results, with the lowest percentage of errors.

For the analysis of large networks, it is clear that synchronous updates have a lower com-
putational cost. Thus, in view of Section 5, the most advantageous solution is to use a mixed
strategy for analysis of interconnections: consider synchronous individual modules and then
construct an asynchronous asymptotic graph. In cases where each individual module has its
own time-scale and their communication happens at a slower pace, mixed strategies are a good
option.

7 Composition of biological networks by feedback interconnec-
tion

A recurrent problem in biology is to study the emergent dynamics arising from the coupling of
two or more different phenomena [22, 4]. Although many biological phenomena are currently
represented by mathematical models, there are no specific tools to systematically explore the
interconnections between two existing models. Our asymptotic graph method addresses this
problem by providing a framework to analyse the joint dynamics of two known networks.
Given two or more previously developed models, our method requires only an investigation
of the input-output connections between the two networks (in Fig. 1, finding u = hB(b) and
v = hA(a)).

To illustrate our method, four pairs of Boolean networks that model distinct phenomena in
several organisms have been coupled to analyze the corresponding joint dynamics. These pairs
are listed in Table 2 by order of size/complexity. (For a complete description and construction
of the models, please refer to the bibliography cited in the Table.)

Following the discussion on Section 6, we will consider synchronous modules and then
compare the synchronous and mixed asymptotic graphs.
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Table 2: Composition of pairs of Boolean networks. The size of each module is given in
parentheses (NA and NB state the number of variables). The last column lists the references
where the original Boolean networks are constructed.

Organism System A (NA) System B (NB) References

Cyanobacteria Clock (5) TTC (3) [7],[16]

Mammalians Cell cycle (10) Clock (7) [17],[10]

Vertebrates T helper A (10) T helper B (13) [30]

Arabidopsis thaliana Cell cycle (14) GHRN (16) [32],[20]

Figure 8: The interconnected cyanobacteria clock (left) and transcription/translation cycle
(right). Bold blue arrows denote input/output connections. The protein KaiA affects KaiC-S
(CS) at a different rate than KaiC-T (CT ) and KaiC-TS (CTS). Therefore, KaiA is represented
by two variables, A1 (low KaiA level) and A2 (high KaiA level). The unphosphorylated protein
Kai C is denoted by CU .

The notation used throughout these examples is the same as before, using the lexicograph-
ical order for Boolean numbers: A3

25 means that this semi-attractor belongs to the graph GA,2,
it has input “2” (Boolean 001) and output “5” (Boolean 100). The superscript “3” means that
it is semi-attractor number 3 in the total count of semi-attractors of module A.

7.1 The cyanobacteria example

Circadian rhythms in cyanobacteria are widely studied and the corresponding mechanism is
very well known: it is characterized by an ordered sequence of phosphorylations in the protein
Kai C under the regulation of another protein, Kai A. This mechanism can be faithfully repro-
duced in vitro (see [35] and references therein). In living cyanobacteria, the clock mechanism
interacts with the transcription/translation cycle (TTC) [16].

The two cyanobacteria modules The Boolean clock mechanism (ΣA) was developed in [7]
and a simple TTC circuit is composed by unphosphorylated protein Kaic C (CU ) and its mRNA
(R), and a “lumped” protein P closes the circuit:

ΣA :

A+
1 = ¬CS ∨A2

A+
2 = ¬CS ∧A2

C+
T = u ∧A1

C+
TS = A1 ∧ CT

C+
S = ¬A2 ∧ CTS

ΣB :
R+ = ¬v ∧ ¬P
C+
U = R

P+ = CU

Based on [16], the interactions are as follows:

u = hB(b) = CU , v = hA(a) = CT ∨ CTS .
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Computation of the state transition graphs for each module shows that there are five semi-
attractors for each module, as follows:

GA,1 : A1
11 = {10000}, A2

11 = {11000},
GA,2 : A3

21 = {00000, 00001, 10000}, A4
22 = {00111, 10100, 10110, 10111}, A5

22 = {11110},(11)

and

GB,1 : B1
11 = {000, 001, 100}, B2

12 = {011, 110, 111}, B3
11 = {101}, B4

12 = {010},
GB,2 : B5

21 = {000}, (12)

Note that A3
21∪A4

22 form an attractor of ΣA (under input 2), which corresponds to the circadian
clock oscillatory orbit:

00000→ 10000→ 10100→ 10110→ 10111→ 00111→ 00001→ 00000

where the Kai C protein is sequencially phosphorylated on its site T (10100), then T and S
(10110), then only on site S (10111), which inhibits Kai A (00111), leading to repeat the cycle.
Similarly, the attractor B1

11∪B2
12 represents the full TTC cycle with Kai C mRNA production

(100) followed by protein production (110), which induces the full pathway (111) and leads to
cycle repetition.

The cyanobacteria synchronous asymptotic graph Computation of the synchronous
asymptotic graph leads to the transition graph shown in Fig. 11. This graph contains 52
states (instead of the 28 = 256 of the full interconnected system), represented by products
of semi-attractors or states a × b (i.e., Boolean states a of ΣA and b of ΣB) and two cyclic
attractors:

Qa,1 : 00000× 100→ 10000× 110→ 10100× 111→ 10110× 011→ 10111× 001→
→ 00011× 000→ 00001× 000→ · · ·

Qa,2 : 11000× 100→ 11000× 110→ 11100× 111→ 11110× 011→ 11110× 001→
→ 11010× 000→ 11000× 000→ · · · .

The first attractor oscillates simultaneaously through the clock and TTC orbits (except that
00111 is replaced by 00011, an equivalent state at this step), showing that the interconnected
system has synchronized clock and transcription/translation oscillations, as expected for wild
type cells.

The second attractor still cycles through TTC but the clock evolves among states which
contain a high concentration of protein Kai A (A2

11 and A5
22), thus preventing the formation of

CS and subsequent re-initialization of the Kai proteins phosphorylation cycle. Such dynamics
can indeed be observed experimentally [35]: a high expression of Kai A prevents circadian
clock oscillations.

The cyanobacteria mixed mode asymptotic graph To compare updating strategies,
the mixed mode asymptotic graph is shown in Fig. 12. It is composed of 25 states (only
products of semi-attractors) and also contains two attractors:

Qa,1mx = {A1
11 ×B1

11, A
1
11 ×B2

12, A
1
11 ×B5

21, A
3
21 ×B2

12, A
3
21 ×B1

11, A
4
22 ×B2

12, A
4
22 ×B5

21}

Qa,2mx = {A5
22 ×B2

12, A
5
22 ×B5

21, A
2
11 ×B2

12, A
2
11 ×B5

21, A
2
11 ×B1

11}.
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Figure 9: The interconnected mammalian cell cycle (left, adapted from [17]) and clock (right,
adapted from [10]). Bold blue arrows denote input/output connections.

From equations (11) and (12), observe that attractors Qa,imx correspond to attractors Qa,i.
Merging semi-attractors that belong to the same attractor, Qa,1mx has the following compact
dynamics:

A4
22 ×B5

21 ← A3
2· ×B1

1·
↓ ↑↓

A1
11 ×B5

21 → A1
11 ×B1

1·

meaning that there is (as in the synchronous asymptotic graph) a simultaneous clock and
TTC oscillation (A3

2·×B1
1·), but also the possibility that the clock oscillator still follows a clear

sequence with Kai C successively phosphorylated in its three possible combinations (A4
22) and

then all unphosphorylated A1
11, while the TTC is arrested (fixed at B5

21). This last case may
represent a situation where protein production is slower or has a higher period than the clock.

7.2 Mammalian example

The interactions between the mammalian cell cycle and circadian clock are currently generating
a large amount of interest in biology, as the progress in single cell measurements allows answer-
ing specific questions [18]. These new experiments are uncovering unexpected bi-directional
links between the two modules.
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The two mammalian modules The cell cycle Boolean model (module ΣA) is taken from [17]
and has the following variables:

CycD+ = CycD

Rb+ = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬CycD ∧ ¬CycB)

E2F+ = (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB)

CycE+ = ¬u ∧ (E2F ∧ ¬Rb) (13)

CycA+ = (E2F ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ Ubc)) ∨ (CycA ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ Ubc))
p27+ = ¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB

Cdc20+ = CycB

Cdh1+ = (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB)

Ubc+ = ¬Cdh1 ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB+ = ¬Cdc20 ∧ ¬Cdh1,

as described in [17], where CycX represent the four cyclins involved in the cell cycle. The
clock model (module ΣB) is based on [10]:

BMAL+ = ¬PCnuc
mPER+ = ¬v ∧BMAL

mCRY + = ¬v ∧BMAL

pPER+ = mPER

pCRY + = mCRY

PC+ = pPER ∧ pCRY
PCnuc+ = PC.

In the clock model, mX and pX denotes mRNA and protein corresponding to gene X, while
PC denotes the complex formed by the proteins PER and CRY, and PCnuc denotes this
complex in the nucleus.

Testing interactions between modules Although there are currently many questions on
the form of interaction between mammalian cell cycle and circadian clock [19], it seems clear
that clock’s BMAL acts on the cell cycle, possibly at different stages. Conversely, no conclusive
biological knowledge exists on how the cell cycle may affect the clock. To include a basic link,
we have considered that during mitosis all gene expression is arrested (in this model, mitosis
can be modeled as Cdc20∧CycB). The interconnection between modules is thus given by (see
Fig. 9):

u = hB(b) = BMAL, v = hA(a) = Cdc20 ∧ CycB.

BMAL acts negatively during G1, S or M-phases of the cell cycle. We analyzed three differ-
ent interconnection models, one for each of these possibilities, and compared the results (see
Table 4). The three cases give similar results in terms of joint behavior. For a closer analysis
consider, for instance, BMAL acting during G1 (here represented by a negative efect on cyclin
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E). In this case, the attractors of each module are:

GA,1 : A1
11 = {0100010100},

A2
11 = {1000001110, 1000100011, 1001100000, 1010000110, 1011000100, 1011100100},

A3
12 = {1000101011},

GA,2 : A4
21 = {0100010100},

A5
21 = {1000001110, 1000100000, 1000100011, 1010000100, 1010000110, 1010100100},

A6
22 = {1000101011},

GB,1 : B1
11 = {0000000, 0000001, 0000011, 0001111, 0111111},

B2
12 = {1000000, 1110000, 1111100, 1111110, 1111111},

B3
11 = {0000010, 0001101, 0110000, 0110011, 0111110},

B4
12 = {1000001, 1001100, 1001111, 1110010, 1111101},

B5
11 = {0001100, 0001110, 0110001, 0111100, 0111101},

B6
12 = {1000010, 1000011, 1001110, 1110001, 1110011},

B7
11 = {0110010}, B8

12 = {1001101},
GB,2 : B9

22 = {1000000}

As expected, the attractors of the graph GA,1 correspond exactly to those listed in [17]. At-
tractors A1

11 and A4
21 correspond to the quiescent cell state while the (full) attractor A2

11 ∪A3
12

corresponds to the known cell cycle progression. A similar cycle is also recovered in GA,2, with
the difference that states 1001100000, 1011000100, and 1011100100 are replaced, respectively,
by 1000100000, 1010000100, and 1010100100: the Boolean sequence of the latter three equals
that of the former three except in the 4th digit, which is set to 0. This is because u = 2 implies
CycE+ ≡ 0 (and CycE is the 4th variable). In both cases, the semi-attractors A3

12 and A6
22

represent mitosis.
The clock mechanism admits a single steady state (B9

22) in the case v = 2, which corre-
sponds to mitosis. This makes sense, as all gene expression is arrested. Outside mitosis (case
v = 1), there are four different oscillatory cycles (B1

11∪B2
12, B3

11∪B4
12, B5

11∪B6
12, and B7

11∪B8
12)

where only the first two correspond to circadian oscillations.

Mammalian synchronous and mixed mode asymptotic graphs Among the different
interaction schemes tested, all allow at least one cycle that captures joint oscillations of cell
cycle and clock. For the scheme where BMAL affects CycE (13), the synchronous asymptotic
graph has five attractors, but only one of these recovers joint oscillations (Q2), all others
corresponding to a quiescent cell with oscillatory clock:

Qa,1 = A4
21 × (B7

11 ∪B8
12)

Qa,2 = {1000100000× 1110001, 1000100011× 0111100, 1000101011× 1001110, 1000001110× 1000011,

1010000110× 0110001, 1011000100× 0001100, 1011100100× 1000010}
Qa,3 = (A1

11 ∪A4
21)× (B3

11 ∪B4
12)

Qa,4 = (A1
11 ∪A4

21)× (B1
11 \ {0000000} ∪B5

11 ∪B9
22 ∪B2

12)

Qa,5 = (A1
11 ∪A4

21)× (B5
11 ∪B6

12)

Attractor Qa,2 represents a joint oscillatory solution taking specific pairs (a, b) with a ∈ A2
11 ∪

A3
12 or a ∈ A5

21 ∪A6
22 and b ∈ B5

11 ∪B6
12.
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The mixed mode graph has also five attractors, which correspond to each of Qa,i. In fact,
we can see from Fig. 14 that there is set equality Qa,i = Qa,imx for i = 1, 3, 4, 5 but strictly
inequality for Qa,2 ⊂ Qa,2mx.

The attractors Qa,i i = 1, 3, 4, 5 represent quiescent cells with ongoing circadian oscillations
(as observed in hair cells [33]), while Qa,2 represents the joint cell division cycle and clock
oscillatory behavior. The mixed mode asymptotic graph shows how this joint behavior emerges
from the combination of the module’s periodic orbits (see left attractor in Fig. 14). Merging
semi-attractors that belong to the same attractor, Qa,2mx can be represented in the compact
form:

A3
12 ×B9

22 ← A2
1· ×B1

1·
↓ ↑↓

A5
2· ×B9

22 � A5
2· ×B1

1·

where A2
1· = A2

11 ∪ A3
12, A5

2· = A5
21 ∪ A6

22, and B1
1· = B1

11 ∪ B2
12. The cell cycle and clock may

jointly oscillate and alternate states with a regular cycle of cyclin E (present mostly through
S phase and mitosis) or eventually switch to a joint cycle with absence of cyclin E. However,
at mitosis (A3

12), the clock may switch to its steady state (B9
22), which leads directly to a full

degradation of cyclin E in the cell cycle (A5
2·).

7.3 T helper cells regulatory network

The third example analyzes the regulatory network developed in [30] to describe the differentia-
tion of T helper cells, which are part of the vertebrate immune system, into one of three classes:
Th0 precursor cells and Th1, Th2 effector cells. Network reconstruction is discussed in [30], it
involves 19 variables and four external input variables, Xe ∈ {IFNβ, IL12, IL18, TCR}. For
the analysis in [30], these four inputs are all set to 0 but here, these external inputs are treated
as constant variables, setting X+

e = Xe to allow for greater generality in the results. Thus, the
23 variable network was first split into two modules, of 10 and 13 variables, respectively:

ΣA :

GATA3+ = (GATA3 ∨ STAT6) ∧ ¬Tbet
IFNβ+ = IFNβ

IFNβR+ = IFNβ
IL4+ = GATA3 ∧ ¬STAT1

IL4R+ = IL4 ∧ ¬SOCS1
JAK1+ = u ∧ ¬SOCS1
SOCS1+ = STAT1 ∨ Tbet
STAT1+ = IFNβR ∨ JAK1
STAT6+ = IL4R

Tbet+ = (STAT1 ∨ Tbet) ∧ ¬GATA3
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ΣB :

IFNγ+ = (IRAK ∨NFAT ∨ STAT4 ∨ v3) ∧ ¬STAT3
IFNγR+ = IFNγ

IL10+ = v1

IL10R+ = IL10
IL12+ = IL12

IL12R+ = IL12
IL18+ = IL18

IL18R+ = IL18 ∧ ¬v2

IRAK+ = IL18R
NFAT+ = TCR
STAT3+ = IL10R
STAT4+ = IL12R ∧ ¬v1

TCR+ = TCR

where the interconnection between modules is given by:

u = hB(b) = IFNγR, v = hA(a) = (GATA3, STAT6, T bet)′.

Module A is single input and has the following 12 semi-attractors:

GA,1 : A1
11 = {0000000000}, A2

12 = {0000001001}, A3
12 = {0110001101}, A4

17 = {1001100010},
A5

15 = {1110001100},
GA,2 : A6

22 = {0000001001}, A7
22 = {0110001101},

A8
25 = {1000001000, 1001000000, 1001110000}, A9

27 = {1000001110, 1000111110, 1001110110},
A10

25 = {1000111000}, A11
27 = {1001000110}, A12

25 = {1110001100}.

Module B has 3 inputs, and therefore eight fixed input graphs GB,v, with altogether 64 single
state attractors (not listed here).

For the interconnection of the two systems, the synchronous and mixed asymptotic graphs
give similar results, both with 33 single state attractors, which can be divided into the following
five groups:

A1
11 ×B1

11 = {0000000000} × {0000000000000},
A4

17 × {0011 ∗ ∗ ∗ 00 ∗ 10∗}, A5
15 × {0011 ∗ ∗ ∗ ∗ ∗ ∗10∗},

A6
22 × {1100 ∗ ∗ ∗ ∗ ∗ ∗0 ∗ ∗}, A7

22 × {1100 ∗ ∗ ∗ ∗ ∗ ∗0 ∗ ∗},

where the symbol ∗ indicates that the corresponding digit may equal either 0 or 1. In the
particular case where all the external input variables are set to 0, Xe ≡ 0, there are only 3
attractors for the full T helper cell regulatory network, as expected. Indeed, this was the only
case considered in [30], which lists the three attractors corresponding to the three T helper cell
phenotypes, Th0, Th1, and Th2.

Our analysis was more general, since the four external input variables (Xe) were allowed
to take all possible combinations of 0,1 values, leading to a total of 33 distinct attractors for
the T helper cell network. However, notice that these attractors follow some specific patterns,
and five distinct groups can be identified, according to the cytokines expressed or not in each
attractor. Furthermore, each group of attractors can then be classified as a representative of
a distinct T helper cell phenotype, as a function of 10 cytokines and proteins that typically
discriminate between the phenotypes.

As summarized in [30], precursor T helper cells, or Th0, do not produce any of the cytokines
represented in this model. The interconnected network (ΣA,ΣB) describes the differentiation
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into the two types of effector cells. Th1 type cells are characterized by high expression of
cytokine IFNγ, protein SOCS1, and transcription factor Tbet. In contrast, the dominant
characteristic of Th2 cells is a high expression of cytokine IL4 and its receptor IL4R. It is
known that SOCS1 inhibits the IL4 pathway, hence SOCS1 is hardly present in Th2 cells.
Moreover, it appears that GATA3 forms a positive feedback loop with IL4, hence it is also
expressed in Th2 cells. Another cytokine, IL10, is also observed in Th2 cells: its expression is
enhanced by IL4 and depends on the presence of STAT3.

Table 3: Classification of attractors into T helper cell phenotypes.

Variable A1
11 ×B1

11 A4
17× A5

15× A6
22× A7

22×
{0011 · · · 00 · 10·} {0011 · · · · · ·10·} {1100 · · · · · ·0 · ·} {1100 · · · · · ·0 · ·}

IFNγ 0 0 0 1 1
IFNγR 0 0 0 1 1
IL10 0 1 1 0 0
IL10R 0 1 1 0 0
IL4 0 1 0 0 0
IL4R 0 1 0 0 0
STAT3 0 1 1 0 0
GATA3 0 1 1 0 0
SOCS1 0 0 1 1 1
Tbet 0 0 0 1 1

IFNβ 0 0 1 0 1

Cell type Th0 Th2 Th1p Th1 Th1

Indeed, all the cytokines and proteins that distinguish between effector cell types are con-
stant in each of the five attractor families, as seen in Table 3. Concerning the external inputs,
only IFNβ has constant expression in each group.

It is clear that A1
11×B1

11 represents precursor cells, Th0, with no expressed variables. There
are two attractor groups (columns five and six) that correspond to Th1 phenotype, with all the
required proteins expressed: IFNγ, IFNγ, SOCS1, and Tbet. There is one group (column
three) which exactly corresponds to phenotype Th2, as it expresses both IL4, IL10 and their
receptors, as well as GATA3 and STAT3.

A fifth attractor group (column four) is identified, representing an intermediate type of
cell which we classified as “pre-Th1” cell phenotype. While this group expresses most of Th2
characteristic proteins, it also expresses the Th1 protein SOCS1, which inhibits the dominant
protein in Th2, IL4. Therefore, this group of attractors cannot be said to represent Th2. One
of the differences between Th2 and Th1p is in the fact that Th1p is stimulated by external
input IFNβ. Experimental evidence [3] shows that IFNβ promotes Th1 cell maturation, by
increasing IFNγ production.

The T helper cell network does reproduce this fact, as shown in Fig. 10: since both GATA3
and Tbet have self-loops, it suffices to apply a perturbation (to Tbet for instance) to invert
the expression levels of GATA3 and Tbet, which will in turn lead to the expression of the
other proteins in a Th1 phenotype. Conversely, it can also be remarked that suppression of
external input IFNβ will lead to loss of SOCS1 expression and subsequent de-repression of
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IL4R, which would determine a Th2 phenotype.

Figure 10: Partial visualization of the T helper cell network, containing only the nodes and
edges involved in maturation of Th1p towards Th1 or Th2, as discussed in Section 7.3. ΣA

nodes are coloured red and ΣB nodes are coloured green. Dashed arrows denote a simplified
pathway, composed of several steps.

As a final remark, it can be noted that Th1 phenotype exists both in the presence and
absence of the external input IFNβ. However, Th2 phenotype can only exist in the absence
of IFNβ, as expected from experimental evidence [3].

7.4 Arabidopsis thaliana example

In the last two years, two fundamental Arabidopsis thaliana signaling networks have been de-
veloped using Boolean models, one comprehensively representing the cell cycle [32] and another
studying the formation of the root apical meristem (RAM) through a genetic-hormonal reg-
ulatory network (GHRN) [20]. Both have about 15 Boolean variables (we will not reproduce
the Boolean networks here, as they are easily accessible through these references) the first has
only one attractor while the later has 17. Several points of possible interactions between these
two networks are discussed in [20], notably two main actions of components of GHRN on the
cell cycle: the first through auxin which modulates the transition from mitotic to endocycle
in Arabidopsis, and the second through cytokinin which promotes the expression of an APC
activator in the root meristem. In the GHRN1 model, auxin is represented by WOX5 (tran-
scription factor Wuschel-related-homeobox-5) and cytokinin by ARR2 (Arabidopsis Response
Regulator 2) . The action of the cell cycle on the GHRN was again represented by arresting
all gene expression during mitosis, here modeled by APC ∧ CycB.

The interconnection between modules is thus given by:

u = hB(b) = [ARR2,WOX5]′, v = hA(a) = APC ∧ CycB

where u inhibits expression of the five genes in GHRN1: SHORT-HYPOCOTYL2 (SHY2),
SHORTROOT (SHR), SCARECROW (SCR), JACKDAW (JKD), and MAGPIE (MGP). Con-
versely, v1 positively affects APC and v2 negatively affects cyclin D.

As expected, the transition graphs GA,1 and GB,1 have exactly the same attractors obtained
in [32, 20]. The mixed mode asymptotic graph Gamx has seven attractors, of the form:

Qa,k`mx =
A1

11 ×Bk
11 ← A1

11 ×B`
21

↑↓ ↑↓
A2

12 ×Bk
11 → A2

12 ×B`
21

, Qa,QCmx = A3
21 ×B6

12 (14)

where A1
11 ∪ A2

12 is the cell cycle attractor [32] and A3
21 is an attractor representing quiescent

cells, and satisfying E2Fa = 1, SCF = CycB = CycA = 0. The attractors B`
vβ represent
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some well known hormonal activity profiles, as listed in [20]:

B6
12 : Quiescent center cells, QC

B13
11 , B

20
21 : Central pro-vascular tissues, in Meristem Transition Domain (C. Prov. TD3)

B14
11 , B

21
21 : Root Cap (R.C. 2)

B15
11 , B

22
21 : Cyclic attractor 2

B16
11 : Central pro-vascular tissues, in Meristem Transition Domain (C. Prov. TD1)

B17
11 : Root Cap (R.C. 1)

B18
11 : Cyclic attractor 1

B23
11 : C. Prov. TD1, with SHY2=0

B24
11 : R.C. 1, with SHY2=0

B25
11 : Cyclic attractor 1, with SHY2=0

The mixed mode asymptotic graph thus predicts that the interconnected cell cycle / GHRN1
network will have seven possible types of asymptotic behavior, characterized by (14), where
the pairs (k, `) ∈ {(13, 20), (14, 21), (15, 22), (16, 24), (17, 25), (18, 23)}. In summary, there is a
quiescent cell steady state A3

21×B6
12, where cell cycle is arrested. All other dynamical behaviors

consist of a normal cell cycle together with a hormonal profile coresponding either to Root Cap
formation or to central pro-vascular tissues, in the transition domain (TD) of the root apical
meristem. The synchronous asymptotic graph obtains all attractors in (14) as well as some
variations around the quiescent cell state Qa,QCmx (not shown).

To explore whether other dynamical behaviors may be obtained, a deep study of the inter-
actions between the cell cycle and GHRN is needed, but this is out of the scope of our paper.
Nevertheless, it stands out that our method constitutes a very practical tool to attack this
question.

8 Discussion and conclusions

The state transition graph of a large network is a computationaly expensive object, especially
for asynchronous networks. Likewise, computing the attractors of large Boolean networks is a
NP-hard problem [2, 23]. Here, we proposed a new method that computes the attractors of
large Boolean networks which are constructed by assembling together sets of smaller, already
known, modules, as is often the case in physics or biology, for instance.

Theoretical advantages The asymptotic graph for the feedback interconnection of two
modules is a new object computed using only the state transition graphs and attractors of each
of the modules. This is a much less demanding state transition graph to compute, as attested
by our studies.

Other methods are very fast in computing all singletons for very large networks (up to
≈ 1000 variables) [42], or very efficient in computing most types of attractors (up to ≈ 100
under variables) [44] but our method is guaranteed to recover all attractors both singletons and
cyclic attractors in the case of asynchronous updates. In addition, it sheds light on Boolean
organization and the role of synchronous, asynchronous, or mixed updates.

An interesting observation is the complementarity of the synchronous and mixed mode
asymptotic graphs, as particularly illlustrated by the mammalian example: the mixed mode
asymptotic graph recovers the general structure of the atttractors in terms of the modules’
attractors, while the synchronous asymptotic graph provides details of the state sequence
within an attractor. The mixed asymptotic graph can be interpreted as the graph of a network,
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Table 4: Summary of interconnection results between each pair of networks listed in Ta-
ble 2. The column “Interconnections” states the input/output connections used for each pair
of models. The column “Attractors” contains the total number of attractors of each mod-
ule (attractors of GA,u and GB,v, for all u, all v), and in the synchronous (Ga) and mixed
(Gamx) strategy asymptotic graphs. The column “Size” reports the size of the synchronous and
mixed asymptotic graphs, to be compared with the total number of states, 2NA×NB , of the full
interconnected systems.

Organism Interconnections Attractors Size
A → B B → A GA,u GB,v Ga Ga

mx Ga Ga
mx GI

−
Cyanobacteria CT ∨ CTS a R CU → CT 4 3 2 2 88 25 256

Mammalian BMAL a CycE 2 4 5 5 352 54 217

Cdc20 ∧ CycB BMAL a CycA 2 4 8 5 472 54 217

a mRNA
BMAL a CycB 2 4 7 5 424 54 217

Vertebrates GATA3→ IL10
GATA3 a STAT4 IFNγR→ JAK1 12 64 33 33 984 768 223

STAT6 a IL18R
Tbet→ IFNγ

Arabidopsis APC ∧ CycB WOX5 a CycD 4 23 11 7 1077 125 230

a mRNA ARR2→ APC

formed by an interconnection of two modules, where the dynamical timescale of each module
is faster relative to the timescale of communication between modules. This property is often
observed in the analysis of biological processes: fast metabolism / slow gene expression; fast
post-translational processes/slow transcription.

Synchronous modules with asynchronous interconnections The dichotomy between
asynchronous and synchronous networks shows that, from a dynamical point of view, the
asymptotic behavior of an asynchronous network can be fully predicted by that of its compo-
nent modules (any pair). In contrast, a synchronous interconnection can generate new asymp-
totic behavior, not predicted by its component modules (some pairs). In fact, the asynchronous
strategy ensures that any partition of a network contains representatives of each basins of at-
traction while under the synchronous strategy some network partitions fail to represent all
basins of attraction, hence some attractors are “forgotten”. In other words, the asymptotic
graph method is guaranteed to give exact results whenever W0 (of Ga) contains a representa-
tive of each basin of attraction in the synchronous case or Ga∗ contains a representative of each
family of pathways leading to an attractor.

The dynamical behavior of large networks is less costly to evaluate with synchronous up-
dates. Our results suggest that an interesting coupling strategy is to use the mixed asymptotic
graph method: each network module is evaluated according to a synchronous updating strat-
egy (or any other, since only the state transition graphs of the modules are needed), and then
the two networks are interconnected through an asynchronous asymptotic graph, which guar-
antees computation of all attractors of the full network and is much smaller than a synchronous
asymptotic graph (see Table 4).
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A method for analysis of emergent behaviors State-of-the-art mathematical models
are presently available for a large selection of biological phenomena. One of the next steps
in mathematical biology is to study the emergent dynamics arising from the coupling of two
or more different models and thus predict the joints effects of two known biological processes.
Our asymptotic graph method is an ideal framework to analyse emergent phenomena due to
the coupling of previously studied networks. Indeed, given the state transition graphs of each
module network (computed according to any updating strategy), an advantageous method is
to adopt an asynchronous strategy for the coupling of the two modules. This will preserve
the specific dynamics of each module and construct an asymptotic graph that recovers all the
emergent behavior of the fully interconnected network. As illustrated by several examples
throughout different organisms, the (mixed) asymptotic graph method is a powerful tool for
studying the interaction between two known networks and predicting their joint behavior. As in
the mammalian or vertebrate T helper cell examples, our method is also useful for interrogating
models and testing new hypotheses, thereby checking the validity of the proposed interaction
mechanisms.
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[44] Zañudo, J., Albert, R.: An effective network reduction approach to find the dynamical
repertoire of discrete dynamic networks. Chaos 23(2), 025,111 (2013)

[45] Zhang, R., Shah, M., Yang, J., Nyland, S., Liu, X., Yun, J., Albert, R., T.P. Loughran,
Jr.: Network model of survival signaling in large granular lymphocyte leukemia. PNAS
105(42), 16,308–16,313 (2008)

30



Figure 11: The synchronous asymptotic graph of the Kai proteins interconnection. Dark
shaded states belong to an attractor.

Figure 12: The mixed mode asymptotic graph of the Kai proteins interconnection. Dark
shaded states belong to an attractor.
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Figure 13: The five attractors of the synchronous asymptotic graph of the mammalian modules
interconnection.
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Figure 14: The five attractors of the mixed mode asymptotic graph of the mammalian modules
interconnection. Left: Q2

mx
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