283 research outputs found

    Effect of Extending the Original Eligibility Criteria for the CROSS Neoadjuvant Chemoradiotherapy on Toxicity and Survival in Esophageal Cancer

    Get PDF
    Patients with curable esophageal cancer (EC) who proceed beyond the original Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study (CROSS) eligibility criteria are also treated with neoadjuvant chemoradiotherapy (nCRT). This study assessed the effect that extending the CROSS eligibility criteria for nCRT has on treatment-related toxicity and overall survival (OS) in EC. The study enrolled 161 patients with locally advanced EC (T1N1-3/T2-4aN0-3/M0) treated with the CROSS schedule followed by esophagectomy. Group 1 consisted of 89 patients who met the CROSS criteria, and group 2 consisted of 72 patients who met the extended eligibility criteria, i.e. a tumor length greater than 8 cm (n = 24), more than 10% weight loss (n = 35), more than 2-4 cm extension in the stomach (n = 21), celiac lymph node metastasis (n = 13), and/or age over 75 years (n = 2). The study assessed the differences in nCRT-associated toxicity [National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) grade3] and 90-day postoperative mortality. Moreover, the prognostic value for OS was assessed with multivariate Cox regression analysis. No difference was found in nCRT-associated toxicity (P = 0.117), postoperative complications (P = 0.783), and 90-day mortality (P = 0.492). The OS differed significantly (P = 0.004), with a median of 37.3 months [95% confidence interval (CI), 10.4-64.2 months] for group 1 and 17.2 months (95% CI 13.8-20.7 months) for group 2. Pathologic N stage (P = 0.023), pathologic T stage (P = 0.043), and group 2 (P = 0.008) were independent prognostic factors for OS. Extension of the CROSS study eligibility criteria for nCRT did not affect nCRT-associated toxicity, postoperative complications, and postoperative mortality, but was prognostic for OS

    Impact of Endoscopic Ultrasonography on (18)F-FDG-PET/CT Upfront Towards Patient Specific Esophageal Cancer Treatment

    Get PDF
    INTRODUCTION: In patients with potentially resectable esophageal cancer (EC), the value of endoscopic ultrasonography (EUS) after fluorine-18 labeled fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) is questionable. Retrospectively, we assessed the impact of EUS after PET/CT on the given treatment in EC patients. METHODS: During the period 2009-2015, 318 EC patients were staged as T1-4aN0-3M0 with hybrid (18)F-FDG-PET/CT or (18)F-FDG-PET with CT and EUS if applicable in a nonspecific order. We determined the impact of EUS on the given treatment in 279 patients who also were staged with EUS. EUS had clinical consequences if it changed curability, extent of radiation fields or lymph node resection (AJCC stations 2-5), and when the performed fine-needle aspiration (FNA) provided conclusive information of suspicious lymph node. RESULTS: EUS had an impact in 80 (28.7%) patients; it changed the radiation field in 63 (22.6%), curability in 5 (1.8%), lymphadenectomy in 48 (17.2%), and FNA was additional in 21 (7.5%). In patients treated with nCRT (n = 194), EUS influenced treatment in 53 (27.3%) patients; in 38 (19.6%) the radiation field changed, in 3 (1.5%) the curability, in 35 (18.0%) the lymphadenectomy, and in 17 (8.8%) FNA was additional. EUS influenced both the extent of radiation field and nodal resection in 31 (16.0%) nCRT patients. CONCLUSIONS: EUS had an impact on the given treatment in approximately 29%. In most patients, the magnitude of EUS found expression in the extent of radiotherapy target volume delineation to upper/high mediastinal lymph nodes

    Long-term stability of cortisol production and metabolism throughout adolescence: longitudinal twin study

    Get PDF
    Life-course experiences have been postulated to program hypothalamus-pituitary-adrenal (HPA) axis activity, suggesting that HPA axis activity is, at least partially, stable over time. Yet, there is paucity of data on the long-term stability of cortisol production and metabolism. We performed a prospective follow-up study in twins recruited from a nationwide register to estimate the stability of cortisol production and metabolism over time, and the contribution of genetic and environmental factors to this stability. In total, 218 healthy mono- and dizygotic twins were included. At the ages of 9, 12 and 17 years, morning urine samples were collected for assessment (by gas chromatography-tandem mass spectrometry) of cortisol metabolites, enabling the calculation of cortisol metabolite excretion rate and cortisol metabolism activity. Our results showed a low stability for both cortisol metabolite excretion rate (with correlations <.20) and cortisol metabolism activity indices (with correlations of .25 to .46 between 9 and 12 years, -.02 to .15 between 12 and 17 years and .09 to .28 between 9 and 17 years). Because of the low stability over time, genetic and environmental contributions to this stability were difficult to assess, although it seemed to be mostly determined by genetic factors. The low stability in both cortisol production and metabolism between ages 9 and 17 years reflects the dynamic nature of the HPA axis

    Exploring the Temporal Relation between Body Mass Index and Corticosteroid Metabolite Excretion in Childhood

    Get PDF
    Childhood obesity is associated with alterations in hypothalamus–pituitary–adrenal (HPA) axis activity. However, it is unknown whether these alterations are a cause or a consequence of obesity. This study aimed to explore the temporal relationship between cortisol production and metabolism, and body mass index (BMI). This prospective follow-up study included 218 children (of whom 50% were male), born between 1995 and 1996, who were assessed at the ages of 9, 12 and 17 years. Morning urine samples were collected for assessment of cortisol metabolites by gas chromatography-tandem mass spectrometry, enabling the calculation of cortisol metabolite excretion rate and cortisol metabolic pathways. A cross-lagged regression model was used to determine whether BMI at various ages during childhood predicted later cortisol production and metabolism parameters, or vice versa. The cross-lagged regression coefficients showed that BMI positively predicted cortisol metabolite excretion (p = 0.03), and not vice versa (p = 0.33). In addition, BMI predicted the later balance of 11ÎČ-hydroxysteroid dehydrogenase (HSD) activities (p = 0.07), and not vice versa (p = 0.55). Finally, cytochrome P450 3A4 activity positively predicted later BMI (p = 0.01). Our study suggests that changes in BMI across the normal range predict alterations in HPA axis activity. Therefore, the alterations in HPA axis activity as observed in earlier studies among children with obesity may be a consequence rather than a cause of increased BMI

    ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology

    Get PDF
    We predicted residual fluid intelligence scores from T1-weighted MRI data available as part of the ABCD NP Challenge 2019, using morphological similarity of grey-matter regions across the cortex. Individual structural covariance networks (SCN) were abstracted into graph-theory metrics averaged over nodes across the brain and in data-driven communities/modules. Metrics included degree, path length, clustering coefficient, centrality, rich club coefficient, and small-worldness. These features derived from the training set were used to build various regression models for predicting residual fluid intelligence scores, with performance evaluated both using cross-validation within the training set and using the held-out validation set. Our predictions on the test set were generated with a support vector regression model trained on the training set. We found minimal improvement over predicting a zero residual fluid intelligence score across the sample population, implying that structural covariance networks calculated from T1-weighted MR imaging data provide little information about residual fluid intelligence.Comment: 8 pages plus references, 3 figures, 2 tables. Submission to the ABCD Neurocognitive Prediction Challenge at MICCAI 201

    Heritability of Urinary Amines, Organic Acids, and Steroid Hormones in Children

    Get PDF
    Variation in metabolite levels reflects individual differences in genetic and environmental factors. Here, we investigated the role of these factors in urinary metabolomics data in children. We examined the effects of sex and age on 86 metabolites, as measured on three metabolomics platforms that target amines, organic acids, and steroid hormones. Next, we estimated their heritability in a twin cohort of 1300 twins (age range: 5.7-12.9 years). We observed associations between age and 50 metabolites and between sex and 21 metabolites. The monozygotic (MZ) and dizygotic (DZ) correlations for the urinary metabolites indicated a role for non-additive genetic factors for 50 amines, 13 organic acids, and 6 steroids. The average broad-sense heritability for these amines, organic acids, and steroids was 0.49 (range: 0.25-0.64), 0.50 (range: 0.33-0.62), and 0.64 (range: 0.43-0.81), respectively. For 6 amines, 7 organic acids, and 4 steroids the twin correlations indicated a role for shared environmental factors and the average narrow-sense heritability was 0.50 (range: 0.37-0.68), 0.50 (range; 0.23-0.61), and 0.47 (range: 0.32-0.70) for these amines, organic acids, and steroids. We conclude that urinary metabolites in children have substantial heritability, with similar estimates for amines and organic acids, and higher estimates for steroid hormones

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
    • 

    corecore