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Abstract. We predicted residual fluid intelligence scores from T1-weighted
MRI data available as part of the ABCD NP Challenge 2019, using mor-
phological similarity of grey-matter regions across the cortex. Individual
structural covariance networks (SCN) were abstracted into graph-theory
metrics averaged over nodes across the brain and in data-driven com-
munities/modules. Metrics included degree, path length, clustering co-
efficient, centrality, rich club coefficient, and small-worldness. These fea-
tures derived from the training set were used to build various regression
models for predicting residual fluid intelligence scores, with performance
evaluated both using cross-validation within the training set and using
the held-out validation set. Our predictions on the test set were gen-
erated with a support vector regression model trained on the training
set. We found minimal improvement over predicting a zero residual fluid
intelligence score across the sample population, implying that structural
covariance networks calculated from T1-weighted MR imaging data pro-
vide little information about residual fluid intelligence.

Keywords: Support Vector Regression · Fluid Intelligence · MRI · Struc-
tural Covariance Networks · Graph theory features

ar
X

iv
:1

90
5.

10
83

4v
1 

 [
q-

bi
o.

N
C

] 
 2

6 
M

ay
 2

01
9

https://orcid.org/0000-0003-0203-3909
https://orcid.org/0000-0002-0977-2539
https://orcid.org/0000-0002-4510-4933
https://orcid.org/0000-0002-7468-2249
https://orcid.org/0000-0002-2884-2336
https://orcid.org/0000-0001-6643-327X
https://orcid.org/0000-0002-4759-2846
https://orcid.org/0000-0002-7150-9918
https://orcid.org/0000-0003-0106-0542
https://orcid.org/0000-0002-6141-2610
https://orcid.org/0000-0002-2826-4046
https://orcid.org/0000-0003-2443-8800
https://orcid.org/0000-0001-5877-9174
https://orcid.org/0000-0002-3309-8441


2 N.P. Oxtoby & F.S. Ferreira, et al.

1 Introduction

Establishing the neurobiological mechanisms underlying intelligence is a key area
of research in Neuroscience [1]. A strong correlation has been observed between
cognitive ability measured at a very young age with the socioeconomic status
[2], as well as longevity and health [3], at an older age. Moreover, intelligence
has been shown to be very stable from young to old age in the same individuals
[4][5]. Thus understanding the mechanisms of cognitive abilities has implications
for health of the general population and can be used to enhance such abilities,
for example through education or environment [6].

Neuroimaging plays a key role in advancing our knowledge of the neurological
mechanisms of intelligence. Several brain-imaging studies have shown the link
between brain features and intelligence, including a positive correlation with
cortical volume and thickness, specifically in the frontal and temporal regions
[7–11]. A link has also been observed between intelligence and the structural
integrity of white matter [12] and the function integrity of the temporal, frontal
and parietal cortices [13]. Studies have also involved both adult and children
[14, 15]. The ABCD NP Challenge asks the question “How predictable is fluid
intelligence from brain imaging data?” To answer this, we took a data-driven, ex-
ploratory approach of trying many models and image-based features — starting
with a hackathon led by the UCL Centre for Medical Image Computing (CMIC).
CMIC aims to make an impact on key medical challenges facing 21st century soci-
ety through performing world-leading research on problems in medical imaging
and image-analysis. Our expertise extends from feature extraction/generation
through to image-based modelling [16, 17], machine learning [18, 19], and be-
yond. The hackathon took place one afternoon in February 2019 and involved
researchers across research groups in UCL CMIC, in addition to colleagues from
the affiliated UCL Wellcome Centre for Human Neuroimaging, UCL Department
of Clinical and Experimental Epilepsy, and Max Planck UCL Centre for Com-
putational Psychiatry and Ageing Research. Regular followup progress meetings
followed the hackathon.

The brain is a complex organ widely touted as operating as a cliquish small-
world network [20], although this may not be the whole story [21]. The ABCD
NP Challenge lacks the diffusion MRI data necessary to estimate anatomical
connectivity via tractography. However, it is possible to quantify morphological
similarity of an individual’s cortex using a graph called a “structural covariance
network” (SCN), which can be used to distinguish between clinical groups [22].
We calculate SCNs for each individual in the ABCD NP Challenge data set and
input them as features to train predictive models of residual fluid intelligence
(rFIQ).

The paper is structured as follows. The next section describes the challenge
data and our methods. Section 3 presents our results which we discuss in section
4 then conclude.
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2 Methods

2.1 Data

The ABCD NP Challenge data consists of a cross-section of imaging data and
intelligence scores for children aged 9–10 years. The T1-weighted MRI data was
acquired using the protocol detailed on the challenge website [23] and in [24],
and split into training (N = 3739), validation (N = 415), and test (N = 4515)
sets. The training and validation sets also include scores of fluid intelligence,
which the ABCD Study measures using the NIH Toolbox Neurocognition bat-
tery [25]. For the challenge, fluid intelligence was residualized to remove de-
pendence upon brain volume, data collection site, age at baseline, sex at birth,
race/ethnicity, highest parental education, parental income, and parental mar-
ital status. While we understand the motivation — the challenge is to predict
intelligence from imaging — this pre-residualization choice in the challenge de-
sign is somewhat limiting because it completely removes any ability to include
covariance of these factors with image-based features. The MRI data provided
was already in pre-processed form. Pre-processing included skull-stripping, re-
moving noise, correcting for field inhomogeneities [26, 27] and affine alignment
of all images to the SRI24 adult brain atlas [28]. The SRI24 segmentations and
corresponding volumes were also provided. Unsurprisingly, the regional volumes
were not predictive of a target that had been adjusted for total brain volume.

2.2 Structural Covariance Network Features

It has been shown that cortical morphology is predictive of cognitive deficits in
individuals with Alzheimer’s disease [22]. We wanted to explore whether the same
could be said for predicting intelligence, so we generated a structural covariance
network (SCN) following [29] (code available on GitHub) for each individual
in the ABCD NP Challenge data set. The SCN is a graph where the nodes
are small cortical regions (3 voxels cubed) and the edges quantify structural
similarity (morphology) between nodes. From each SCN we generated nodal
graph-theory features using the Brain Connectivity Toolbox [30], which were
then averaged across the brain and also within each of the largest three modules
(communities) of the graph. We also considered measures of variation in these
features (standard deviation and median-absolute deviation). Our 26 features
include small-worldness, rich club coefficient, path length, node degree, clustering
coefficient, and betweenness centrality (Table 1). See Figure 1 for a graphical
representation of the pipeline.
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Fig. 1. Structural Covariance Network feature-generation pipeline.

Generating approximately ten thousand SCNs and corresponding graph-
theory features is an intensive computational task. When the pipeline failed for
a given individual, or time was not permitting (such as the late addition of 868
additional test subjects), this resulted in missing data. For these few individuals
(≤ 8%: Table 1) we inserted a prediction of zero (nominally the mean).

2.3 Predictive Models

We trained two models to predict rFIQ from features based on morphological
similarity. The first was the event-based model (EBM) of progression [17, 31].
The second was support-vector regression (SVR) [32]. We trained each model
on data from the training set, and assessed performance using MSE on the
validation set (Table 1). The best-performing model (SVR) was used to generate
our submission to the challenge: predictions for the test set.

The EBM learns a discrete sequence of progression events from normal/low
state to abnormal/high. It was designed for neurodegenerative diseases but can
be applied to any monotonic phenomenon. Here we define low rFIQ as more than
one standard deviation (std) below the mean and high rFIQ as more than one
std above the mean. If rFIQ is a monotonic function of structural covariance,
then the EBM should be able to find a probabilistic sequence of events that
represent this function. “Events” are structural covariance graph-theory features,
and they must differ statistically between low-rFIQ and high-rFIQ for them to be
included in the model — otherwise they contain no “signal” for this trajectory.
We excluded features that did not pass (p > 0.10) the Mann-Whitney U test
of the null hypothesis that the distributions (low/high rFIQ) are equal. EBM
stage and rFIQ score was input into a Kernel Ridge Regression model (default
parameters, scikit-learn: [33]) to make the predictions.
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The SVR was run in PRoNTo version 3 (Pattern Recognition for Neuroimag-
ing Toolbox) [34, 35] — a software toolbox of pattern recognition techniques
for the analysis of neuroimaging data. Model performance on the training set
was assessed using 5-fold nested cross-validation (i.e. the internal and exter-
nal loops had 5 folds) to optimise the penalty parameter C (we use 6 different
logarithmically-spaced values: 0.01, 0.1, 1, 10, 100 and 1000) and compute the
MSE per fold, which were averaged across folds to compute the final prediction
error (Table 2).

Table 1. Descriptive values for 26 SCN graph-theory features across training, valida-
tion, and test sets. Values are: mean (std). Missing data was due to feature generation
failure (see Methods): training set 96% complete; validation 94%; test 92%.
Notes: Centrality = Betweenness centrality; Clustering = Clustering coefficient.

Whole Network Features
Training Validation Test

(N=3579 of 3739) (N=390 of 415) (N=4156 of 4515)

Small-world 1.68 (0.03) 1.68 (0.02) 1.68 (0.02)

Rich Club – median 0.29 (0.01) 0.29 (0.01) 0.29 (0.01)

– mad 0.11 (0.03) 0.11 (0.01) 0.11 (0.01)

Path Length – median 2.48 (0.03) 2.48 (0.01) 2.48 (0.01)

– std 1.15 (0.03) 1.15 (0.02) 1.16 (0.02)

Degree – median 1050 (45) 1052 (45) 1053 (40)

– mad 295 (19) 294 (15) 294 (15)

Centrality – median 6584 (171) 6590 (150) 6578 (152)

– mad 5153 (157) 5157 (118) 5158 (117)

Clustering – median 0.53 (0.01) 0.53 (0.01) 0.53 (0.01)

– mad 0.063 (0.005) 0.063 (0.005) 0.063 (0.005)

Community 1/2/3 features

Avg. Degree – 1 995 (233) 1004 (232) 995 (239)

– 2 996 (240) 997 (235) 999 (239)

– 3 1019 (242) 1004 (243) 1014 (238)

Avg. degree z-score (all) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1)

Avg. path length (all) 1.5 (0.1) 1.5 (0.1) 1.5 (0.1)

Centrality – 1 6020 (3750) 6180 (3800) 6100 (3780)

– 2 6290 (3790) 6030 (3740) 6290 (3770)

– 3 6660 (3830) 6550 (3760) 6520 (3810)

Clustering – 1 0.53 (0.06) 0.53 (0.06) 0.52 (0.06)

– 2 0.53 (0.06) 0.53 (0.06) 0.53 (0.06)

– 3 0.53 (0.06) 0.53 (0.06) 0.52 (0.06)
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3 Results

We included 26 SCN graph-theory features that represent morphological simi-
larity across the cortex. Table 1 summarises the features we derived from the
T1 images, and the level of completeness in each challenge data set (see Section
2.3). For the EBM, only three features passed through our Mann-Whitney U
test filter (see Methods): small-worldness, betweenness centrality (median), and
degree. Even for these features, there was very little difference between the low-
and high-rFIQ groups (see Table 1), with Cohen’s d effect sizes of −0.11/0.06
(small-world), 0.07/ − 0.10 (degree), and −0.09/0.009 (centrality) in the train-
ing/validation sets. In light of the opposing effect direction (signs), the model’s
poor generalisation performance is unsurprising (see Table 2).

For the SVR model, two features were most important: small-worldness
(weight w = 11.42); and clustering coefficient in community 2 (w = 6.04).
Among the next most important were average path length and other cluster-
ing coefficients.

Table 2 shows our prediction results for both models: mean-squared errors
and Pearson’s squared correlation coefficient for training and validation. It is
clear that both the approaches did not generalise well under validation. Our
submission to the challenge (SVR) was positioned near the middle of the testing
leaderboard with MSE = 93.8335.

Table 2. Mean-squared error (MSE) and correlation for the predictive models. For reference, the 

variance of the training set was 85.85 and the validation set was 71.53. 

 

Prediction  

method 

Training set Validation set 

MSE Correlation MSE Correlation 

SVR 85.82 0.02 71.19 0.01 

EBM+KRR 85.46 0.001 71.58 0.003 

 

 

 

 

 

 

 

 

Fig. 1. Training and validation errors for EBM approach. 

 

Fig. 2. (left). Prediction on the training set using a 5-fold CV for the SVR; (right) Predictions on 

the validation set. 

Fig. 2. Training and validation errors for the EBM approach.
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Table 2. Mean-squared error (MSE) and correlation for the predictive models. For
reference, the variance of the training set was 85.85 and the validation set was 71.53.

Prediction method
Training set Validation set Test set

MSE Correlation MSE Correlation MSE

SVR 85.82 0.02 71.19 0.01 93.8335

EBM+KRR 85.46 0.001 71.58 0.003 N/A
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Fig. 3. SVR prediction errors: (left) training set using 5-fold CV; (right) validation set.
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4 Discussion

The ABCD NP Challenge was certainly challenging. Our MSE for predicting
residual fluid intelligence was only nominally better than simply predicting zero,
i.e., the mean. This implies that the residual fluid intelligence is not explainable
by graph theory features derived from structural covariance networks. We found
similar results for all combinations of models and features attempted during and
after our hackathon — from basic regression to deep learning. Moreover, the
validation leader board (see challenge website) demonstrated that other entries
into the challenge had similarly meagre performance improvement on simply
predicting the mean.

While the residualization process precluded the use of models that include
covariance of the residualization factors [18] with image-based features, it is
difficult to say whether or not this would have improved the results dramatically.
Including variables in the residualization procedure that are correlated with the
predicted variable is likely to remove important variability in the data leading
to predictive models with low performance [36].

5 Conclusion

Based on our results, and those on the validation leaderboard for the challenge,
we are inclined to conclude that structural imaging is probably incapable of
predicting more than a couple of points worth of residual fluid intelligence.
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