150 research outputs found

    Vegetation height products between 60° S and 60° N from ICESat GLAS data.

    Get PDF
    We present new coarse resolution (0.5� ×0.5�)vegetation height and vegetation-cover fraction data sets between 60� S and 60� N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat), the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008) with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70m in 0.5m intervals for each 0.5�×0.5�. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r =0.33 to r =0.78, decreases the root-mean-square error by a factor 3 to about 6m (RMSE) or 4.5m (68% error distribution) and decreases the bias from 5.7m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a global vegetation height product typically used in a climate model, a recent global tree height product, and a vegetation greenness product and is shown to produce realistic estimates of vegetation height. Finally, the GLAS bare soil cover fraction is compared globally with the MODIS bare soil fraction (r = 0.65) and with bare soil cover fraction estimates derived from AVHRR NDVI data (r =0.67); the GLAS treecover fraction is compared with the MODIS tree-cover fraction (r =0.79). The evaluation indicates that filters applied to the GLAS data are conservative and eliminate a large proportion of spurious data, while only in a minority of cases at the cost of removing reliable data as well. The new GLAS vegetation height product appears more realistic than previous data sets used in climate models and ecological models and hence should significantly improve simulations that involve the land surface

    Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought

    Get PDF
    In 2000-03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these condition

    Intra-annual variability of wood formation and δ13C in tree-rings at Hyytiälä, Finland

    Get PDF
    Investigation of the relationship between tree-ring stable carbon isotope composition (δ13C) and environmental variables at the intra-seasonal scale can inform on the understanding of the environmental forcing affecting trees during the active period of radial growth. Recent progress in the measurement techniques for assessing the δ13C signature of tree rings at high spatial resolution provides an opportunity to derive tree physiological information at fine temporal scale, within a given year. Three δ13C time series of resin-extracted wholewood from tree-rings of Scots pine trees (Pinus sylvestris L.) sampled at Hyytiälä (Finland) have been produced by using laser-ablation stable isotope mass spectrometry. These intra-seasonal stable isotope series exhibit a strong common signal (EPS = 0.96) demonstrating the capacity of trees within a stand to preserve a common intra-seasonal response to external controls in a similar manner as found with annual measurements. To estimate when wood cells are active and responsive to environmental information, a Gompertz approach, assessed against microcore data, was adopted to model the timing of wood formation. The addition of a cell lifetime function into environment-growth models may evaluate more completely, the environmental effect on intra-annual tree-ring δ13C values and that during the growing season. Statistical analysis of the resulting tree-ring δ13C intra-annual signal implies a shift in importance from the influence of the environmental variables through out the growing season

    Using High Resolution LiDAR Data and a Flux Footprint Parameterization to Scale Evapotranspiration Estimates to Lower Pixel Resolutions

    Get PDF
    Over the last several decades the hydrologically sensitive Boreal Plains ecoregion of Western Canada has experienced significant warming and drying. To better predict implications of land cover changes on evapotranspiration (ET) and future water resources in this region, high resolution light detection and ranging and energy balance data are used here to spatially parameterize the Penman-Monteith ET model. Within a 5 km × 5 km area of peatland ecosystems, riparian boundaries, and upland mixedwood forests, the influence of land cover heterogeneity on the accuracy of modeled ET is examined at pixel sizes of 1, 10, 25, 250, 500, and 1,000 m, representing resolutions common to popular satellite products (SPOT, Landsat, and MODIS). Modeled ET was compared with tower-based eddy covariance measurements using a weighted flux footprint model. Errors range from 10% to 36% of measured fluxes and results indicate that sensors with small pixel sizes (1 m) offer significantly better accuracy in large heterogeneous flux footprints, while a wider range of pixel sizes (500 m) pixel sizes offered significantly less accuracy, although changes in pixel size within this range offered comparable results

    Using Drones for Art and Exergaming

    Get PDF
    This Spotlight department features two separate articles. In 'Flying Displays and Drone-Assisted Art Making,' Jürgen Scheible and Markus Funk provide an overview of their work in creating flying displays and viewports for drone-assisted art making. In 'Interactive Context-Aware Projections with Drones for Exergaming,' Klen Copic Pucihar, Matjaz Kljun, Mark Lochrie, Paul Egglestone, and Peter Skrlj present a moving projection platform that can project content onto arbitrary surfaces while tracking user interaction within and around the displayed content. In particular, they explore how the platform's mobility and rich interaction possibilities create opportunities for advancing research focused on human-drone interaction during street games. This department is part of a special issue on drones

    Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the ‘Angry Summer’ of 2012/2013

    Get PDF
    As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober and Richard Silberstei

    Methane exchange in a boreal forest estimated by gradient method

    Get PDF
    Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions

    Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model

    Get PDF
    The Geoscience Laser Altimeter System (GLAS) has the potential to accurately map global vegetation heights and fractional cover metrics using active laser pulse emission/reception. However, large uncertainties in the derivation of data products exist, since multiple physically plausible interpretations of the data are possible. In this study a method is described and evaluated to derive vegetation height and fractional cover from GLAS waveforms by inversion of the FLIGHT radiative transfer model. A lookup-table is constructed giving expected waveforms for a comprehensive set of canopy realisations, and is used to determine the most likely set of biophysical parameters describing the forest structure, consistent with any given GLAS waveform. The parameters retrieved are canopy height, leaf area index (LAI), fractional cover and ground slope. The range of possible parameters consistent with the waveform is used to give a per-retrieval uncertainty estimate for each retrieved parameter. The retrieved estimates were evaluated first using a simulated data set and then validated against airborne laser scanning (ALS) products for three forest sites coincident with GLAS overpasses. Results for height retrieval show mean absolute error (MAE) of 3.71 m for a mixed temperate forest site within Forest of Dean (UK), 3.35 m for the Southern Old Aspen Site, Saskatchewan, Canada, and 5.13 m for a boreal coniferous site in Norunda, Sweden. Fractional cover showed MAE of 0.10 for Forest of Dean and 0.23 for Norunda. Coefficient of determination between ALS and GLAS estimates over the combined dataset gave R2 values of 0.71 for height and 0.48 for fractional cover, with biases of −3.4 m and 0.02 respectively. Smallest errors were found where overpass dates for ALS data collection closely matched GLAS overpasses. Explicit instrument parameterisation means the method is readily adapted to future planned spaceborne LiDAR instruments such as GEDI

    Designing organometallic compounds for catalysis and therapy

    Get PDF
    Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η 6-arene, η 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. © 2012 The Royal Society of Chemistry
    corecore