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Abstract 48 
Over the last several decades the hydrologically sensitive Boreal Plains ecoregion of Western 49 

Canada has experienced significant warming and drying. To better predict implications of land 50 

cover changes on evapotranspiration (ET) and future water resources in this region we used high 51 

resolution light detection and ranging and energy balance data to spatially parameterise the 52 

Penman-Monteith ET model. Within a 5 km x 5 km area of peatland ecosystems, riparian 53 

boundaries, and upland mixedwood forests, the influence of land cover heterogeneity on the 54 

accuracy of modelled ET is examined at pixel sizes of 1, 10, 25, 250, 500 and 1000 m, 55 

representing resolutions common to popular satellite products (SPOT, Landsat and MODIS). 56 

Modelled ET was compared with tower-based eddy covariance measurements using a weighted 57 

flux footprint model. Errors range from 10% to 36% of measured fluxes and results indicate that  58 

sensors with small pixel sizes (1 m) offer significantly better accuracy in large heterogeneous 59 

flux footprints, while a wider range of pixel sizes (<25 m) can be suitably applied to smaller 60 

homogeneous footprints. Mid (250 m) and coarse (>500 m) pixel sizes offered significantly less 61 

accuracy, although changes in pixel size within this range offered comparable results. 62 

Key words: Evapotranspiration  modelling; evapotranspiration scaling; LiDAR, eddy covariance; 63 

vegetation structure; Boreal. 64 

 65 

Introduction 66 

Climate warming is expected to have a disproportionately large impact on Canada's high latitude 67 

regions and to alter precipitation (P) and evapotranspiration (ET) patterns in Boreal Canada 68 

(IPCC, 2007). Western Canada's Boreal Plains ecozone covers approximately 629,527km2 69 

(National Forest Inventory, 2006) and is a hydrologically sensitive region where potential ET 70 

(PET) generally exceeds P on an annual basis, creating persistent water-deficit conditions that 71 

are interrupted by infrequent wet years occurring on a 10-15 year cycle (Devito et al., 2005a). 72 

Consequently, ET is commonly the largest component of the surface energy and water budgets 73 

during the growing season in high latitude regions (Comer et al., 2000; Cleugh et al., 2007; 74 

Raddatz et al., 2009). Therefore, an accurate understanding of ET and its driving processes is 75 

essential for characterizing water partitioning and atmospheric losses from the water balance, 76 

especially as the climate in this region continues to warm and become drier. 77 
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 However, accurately assessing ET at the scales of interest to water managers is difficult 78 

due to the heterogeneous nature of this region (Ferone and Devito, 2004; Smerdon et al., 2005), 79 

the fragmented and changing land cover due to resource extraction (Lee and Boutin, 2006; 80 

Turetsky and St. Louis, 2006; Graf, 2009), and accessibility issues in largely remote locations. 81 

As a result, traditional point-scale or tower-based measurements of cumulative energy and water 82 

flux data are sparse and difficult to spatially extrapolate (Næsset and Økland, 2002; Loheide and 83 

Gorelick, 2005; Coops et al., 2007). Remote sensing offers the ability to collect information on 84 

ecosystems of interest over a variety of spatial and temporal resolutions, and has provided a 85 

platform from which point and tower data can be scaled to landscapes or regions of interest to 86 

resource managers.  87 

 Modern methods linking remote sensing with energy and water balance data take the 88 

form of surface energy balance methods, which rely on radiated thermal measurements to infer 89 

surface temperature and available energy, from which ET can be estimated as a residual 90 

(Bastiaanssen et al., 1998; Su, et al., 2002; Caparrini et al., 2003; Kustas et al., 2003; Jiang and 91 

Islam, 2006). Several popular remote sensing energy balance models that have emerged include 92 

SEBS (Su, 2002), S-SEBI (Roerink et al., 2000), SEBAL (Bastiaanssen, 1998; Ruhoff et al., 93 

2012) and METRIC (Allen et al., 2007). Such methods are useful as they measure physical 94 

radiative properties of a surface that are directly related to ET (Overgaard et al., 2006). However, 95 

errors associated with energy balance methods can originate from small inaccuracies in 96 

measurement of surface temperature that propagate to larger errors in the estimation of turbulent 97 

fluxes (Cleugh et al., 2007).  98 

 The Penman-Monteith (PM) equation (Monteith, 1965) has also been successfully used to 99 

estimate ET across a variety of climates and land covers (Allen, 1998; Ventura 1999; Chen et al., 100 
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2005b; Cleugh et al., 2007; Armstrong et al., 2008; Leuning et al., 2008). In the context of land 101 

surface models (LSM) the PM model is often driven using energy balance and stomatal 102 

resistance datasets, which provide temporal variability of surface conditions, while remote 103 

sensing data products provide a platform to scale the model to land cover types based on average 104 

leaf area index per land cover type or per pixel (Leuning et al., 2008; Sutherland et al., 2014). 105 

 Additionally, spectral vegetation index (SVI) methods indirectly estimate ET as a 106 

function of vegetation distribution and reflectance parameters (Running and Nemani, 1988; Kite 107 

and Spence, 1995; Chen and Cihlar, 1996; Jiang and Islam, 1999; Haboudane et al., 2004; Wang 108 

et al., 2005; Pisek et al., 2011), and thus leaf area index (LAI) is the primary measure of green 109 

vegetation in SVIs that estimate ET (Wang et al., 2005). However, SVIs have been shown to 110 

saturate beyond certain LAI thresholds  (Haboudane et al., 2004; Wang et al., 2005; Wu et al., 111 

2008). Additionally, spectral reflectance values given off by understory vegetation and soil 112 

surfaces are known to introduce significant background noise in mixed pixels (Chen and Cihlar, 113 

1996; Lim et al., 2003; Parker et al., 2001).  114 

 Both energy balance and SVI methods have been applied to many different regions and 115 

have shown promising results in most cases. There are however, several drawbacks common to 116 

both methods, particularly within heterogeneous environments: 1) Coarse resolutions can lead to 117 

landscape heterogeneity not being resolved within mixed pixels (Moran and Jackson, 1991; 118 

Hudak et al., 2002; Kustas et al., 2004; Nagler et al., 2005; McCabe and Wood, 2006; Anderson 119 

et al., 2012); 2) passive remote sensors saturate at high levels of LAI (Lüdeke et al. 1991; 120 

Haboudane et al., 2004; Wu et al., 2008) and therefore underestimate ET when applied to multi-121 

layer, densely foliated ecosystems; 3) while they can provide information on vegetation 122 

distribution in the horizontal direction, they cannot directly sense the structure of surface 123 
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vegetation in the vertical direction (Hudak et al., 2002); and 4) validation of ET estimates from 124 

coarse satellite data can be difficult due to the large disparity in scale between in situ ET 125 

measurements and modelled ET values (Li et al., 2009; Anderson et al., 2012) resulting in the 126 

inclusion of land areas not represented by the EC system for validation (Göeckede et al. 2008; 127 

Chasmer et al. 2011a). 128 

 While spectral remote sensing data provide information on the spatial characteristics of 129 

the ecosystem such as canopy cover, vegetation health, and land surface heterogeneity (Turner et 130 

al., 2002; Göckede et al., 2008), air-borne light detection and ranging (LiDAR) data go a step 131 

further by measuring the full three-dimensional characteristics of the land surface offering high 132 

resolution data products on vegetation structure (Lim and Treitz, 2004; Hopkinson et al., 2005; 133 

Morsdorf et al., 2006; Hopkinson and Chasmer, 2007; Chasmer et al., 2011b; Korhonen, et al., 134 

2011; Hansen et al., 2014; Saito et al. 2015;  Schumacher et al., 2015; and many more). Of the 135 

LiDAR data products available, vegetation height and LAI are the most relevant to estimating 136 

ET, as these parameters influence physiological, aerodynamic, and energy components of ET 137 

models. 138 

 To the authors' knowledge, few studies have used canopy structural information obtained 139 

from LiDAR data within land surface or ecosystem models to estimate ET fluxes (Neale et al., 140 

2011; Mitchell et al., 2012), and fewer studies have integrated LiDAR data with a footprint 141 

model for the direct purpose of assessing how modelled ET differs using vegetation structure 142 

inputs of varying pixel sizes over heterogeneous land surface areas. Chasmer et al. (2011a) 143 

introduced this topic by integrating LiDAR derivatives of canopy structure with the footprint 144 

parameterization of Kljun et al. (2004) to better understand uncertainties in gross primary 145 

production (GPP) within 1 km resolution MODIS pixels. Sutherland et al. (2014) built on this 146 
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work by using LiDAR-derived vegetation parameters to assess the accuracy of spatially explicit 147 

high-resolution vs bulk average model inputs to produce estimates of ET scaled beyond the 148 

tower footprint, but neither study examined a broad range of remote sensing pixel sizes. 149 

Consequently, uncertainty remains surrounding the accuracy of common sensor pixel sizes that 150 

may be used to characterize heterogeneous ecosystems within LSMs.   151 

 To examine how modelled ET varies using vegetation structure inputs at a variety of 152 

pixel sizes over heterogeneous landscapes the following study uses airborne LiDAR data 153 

products (LAI, canopy roughness) and a network of energy balance towers to parameterize the 154 

PM ET model at a pixel size of 1 m2 within the heterogeneous Boreal Plain ecozone following 155 

methods of Chasmer et al. (2011b) and Sutherland et al. (2014). The primary objective of this 156 

study is to assess the accuracy of variable pixel sizes (1, 10, 25, 250, 500, 1000 m) as inputs to 157 

the PM ET model over homogeneous to heterogeneous land cover types in the Boreal Plains. 158 

LiDAR is used to generate 3D inputs to aerodynamic roughness and LAI. The model is then run 159 

on decreasing pixel sizes up to 1000 m and compared with eddy covariance data for validation. 160 

 The parameterization of ecosystem and land surface models using an integrated LiDAR-161 

footprint approach at different pixel sizes may improve our understanding of the influence of 162 

spatial heterogeneity on model results at coarse resolutions, site representation of EC 163 

measurements, and discrimination of the 3D canopy characteristics required for spatial estimates 164 

of LAI and surface roughness not available using spectral remote sensing methods. This study, 165 

therefore, will quantify pixel sizes that best approximate EC estimates of ET within variable 166 

footprint extents and land cover types and offer insight into scaling methods in heterogeneous 167 

environments. 168 
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Study Site 169 

The Utikuma Region Study Area (URSA) (Figure 1) is located 370 km north of Edmonton and is 170 

comprised of a network of research sites that have been the focus of numerous studies (e.g. 171 

Devito et al., 2005a, b; Petrone et al., 2007; Brown et al. 2010; Chasmer et al. 2011a; Petrone et 172 

al. 2011; Brown et al., 2013; Petrone et al. 2015). The URSA is characterized by a complex 173 

patchwork of heterogeneous land cover types including: mixed-wood uplands comprised of 174 

trembling aspen (Populus tremuloides), minimal balsam poplar (Populus balsamifera) and white 175 

spruce (Picea glauca); sparsely treed Sphagnum and black spruce (Picea mariana) peatlands; 176 

and shallow ponds with peat extension up to 40 m from the pond edge. The study area is 177 

hydrologically sensitive due to the sub-humid climate and extensive anthropogenic and natural 178 

disturbance (Lee and Boutin, 2006; Turetsky and St. Louis, 2006; Graf, 2009; Petrone et al. 179 

2015). Mean annual temperature measured nearby at Slave Lake is 1.7 oC (1980 – 2010), while 180 

average annual precipitation is 515 mm (Petrone et al. 2007).  181 

 Two regenerating upland mixed-wood stands are examined in this study (Figure 1b). The 182 

northern stand was harvested in February of 2007, while the southern stand was harvested in 183 

February of 2008. Canopy heights determined from airborne LiDAR within these regenerating 184 

mixed-wood stands range from 0.5 m to 16 m and LAI ranges from 0 to 4. Both stands are 185 

surrounded by a mature aspen canopy between 10-20 m in height. 186 

Figure 1: a) 5 km2 land cover classification; b) local land cover classification surrounding energy 187 

balance and eddy covariance towers; c) 5 km2 canopy height model (m); d) 5 km2 digital 188 

elevation model (m above sea level); and e) 5 km2 leaf area index map. 189 

 190 

Materials and Methods 191 
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Hydro-meteorological instrumentation used to drive modelled ET 192 

To inform and drive the PM model meteorological and hydrological data were collected from 193 

June 1st to August 31st, 2008, at a 5 km x 5 km study area using a network of eleven energy 194 

balance towers (Table 1) measuring ground temperature profiles (TG, oC) (Omega copper-195 

constantin, Campbell Scientific Inc, Logan, Utah, USA) at 0.1, 0.25, 0.5 and 1 m below ground; 196 

net radiation (Q*, W m-2) at 3 m (NRLite, Kipp and Zonen, The Netherlands); and air 197 

temperature (Ta,
oC) and relative humidity (RH, %) at 1 and 2 m above ground (HOBO Onset Pro 198 

Temp/RH, Hoskin Scientific, Vancouver, Canada). Two energy balance towers are located each 199 

in upland mature mixed-wood forests, riparian, treed wetland and open wetland land cover types 200 

and are averaged for input into the PM model, while one tower is located over a pond.  201 

 Approximately 4000 porometry measurements of leaf stomatal conductance (gs, mmol m-
202 

2 s-1) were also collected throughout the study period within regenerating mixed-wood and 203 

mature aspen stands  (SC-1 Decagon Devices, Inc. WA) (Giroux, 2012), coincident with EC 204 

measurements. These were averaged per species type and age class (mature, regenerating) and 205 

input into the PM model.  206 

 207 

Table 1. 208 

 209 

LiDAR data collection and processing 210 

Airborne scanning LiDAR data were collected prior to foliage loss in mid-September, 2008 by 211 

Airborne Imaging Inc. and contracted by the Government of Alberta. The system used was a 212 
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small footprint discrete-return ALTM 3100EA (Optech Inc.,Toronto ON), operated at a flying 213 

height of 1400 m above ground level, with a pulse repetition frequency of 50 kHz and a scan 214 

angle of ±25o. A swath overlap of 50% ensured that all sides of trees and the ground surface 215 

were sampled. Data derivatives used as input into the PM model included a high resolution (1 m) 216 

digital elevation model (DEM), canopy height model (CHM), LAI, and a landcover classification 217 

(Sutherland et al., 2014; Chasmer et al. 2016).  218 

 The land cover classification divided the land surface into groups including upland forest, 219 

water, open wetland, treed wetland, and disturbance and was compared with manual delineation 220 

of wetland and water areas from aerial photos (Halsey et al. 2004) and field data collection 221 

(Chasmer et al. 2016). Errors of omission of wetland, upland forest and pond areas, which make 222 

up the dominant land cover within the 5 km x 5 km study area were manually corrected in areas 223 

where open and closed wetlands were classified as upland forest (~8% of the area).  224 

 While energy balance data was used to inform temporal variability in ET over the study 225 

period, LiDAR data products were used to inform spatial variability in ET across the 5 km x 5 226 

km study site. Leaf area index, a  data product used to estimate stomatal resistance in equation 227 

(1), was estimated from LiDAR-derived canopy gap fraction (number of ground returns divided 228 

by all returns within a column, x, y, z), and allometric estimates of canopy clumping, needle to 229 

shoot area ratio, and woody to total area ratios (Chen et al., 2006; Sutherland et al., 2014) were 230 

applied per dominant species within each land cover type.  231 

 232 

Description of the Penman-Monteith Model to be parameterised using energy balance and 233 

LiDAR data  234 

The PM model is described as:  235 
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 236 

λE	 ൌ 		
ሾ୼	ሺ୕∗		ି		୕ృ	ሻ	ሿ	ା		஡౗	େ౦	

ሺ౛౩ష౛౗ሻ
౨౗

୼		ା	ϒ	ቀଵ	ା	
౨౩
౨౗
ቁ

    (1) 237 

 and requires temporally varying inputs of λ (latent heat of vaporization [MJ kg-1]), Δ (slope of 238 

the vapour pressure curve [kPa oC-1]), Q* (net radiation [here as MJ m-2 h-1]), QG (soil heat flux 239 

density [MJ m-2 h-1]), ρa (density of the air [kg m-3]), cp (specific heat of the air [KJ kg-1 K-1]), es 240 

(saturation vapour pressure [kPa]), ea (actual vapour pressure represented as [kPa]), and ϒ 241 

(psychrometric constant [kPa oC-1]) measured by energy balance towers unique to each land 242 

cover type. 243 

 Following the methods of Sutherland et al. (2014) spatially explicit values of ra 244 

(aerodynamic resistance [s m-1]) and rs (surface resistance [s m-1]) were calculated for each 1 m x 245 

1 m pixel in the study area using LiDAR-derived measurements of canopy height (CHM) and 246 

LAI, such that unique ra and rs were estimated for each pixel as: 247 

 248 

௔ݎ ൌ
୪୬ቂ

ሺ౰ౣషౚሻ
౰౥ౣ

ቃ ୪୬൤
ሺ౰౞షౚሻ
౰౥౞

൨

୩మ	୳౰
         (2) 249 

and  250 

rୱ ൌ 	
୰ౢ
୐୅୍

          (3) 251 

 252 

where zm  is the height of wind measurements [m]; zh  is the height of humidity measurements 253 

[m]),  uz is the wind speed [m s-1], and k is von Karman’s constant.  Roughness layers dependent 254 

on spatially varying vegetation structure were derived from LiDAR and include: d (zero plane 255 
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displacement [m]) and zo and zoh (roughness length governing momentum and heat and water 256 

vapour, respectively [m]) (Oke, 1987). Bulk stomatal resistance [rl, s m-1] was determined from 257 

porometry measurements and applied to land cover types. The model outputs a spatially explicit 258 

high resolution (1 x 1 m) estimate of ET for each land cover type in the study area. 259 

 260 

Scaling the PM model to lower resolution pixels 261 

To determine the degree that landscape heterogeneity contributes to differences in modelled ET 262 

across a range of pixel sizes, spatially explicit estimates of cumulative daily ET at a pixel sizes of 263 

1 m  x 1 m are resampled to larger sizes characteristic of commonly available satellite data (10, 264 

25, 250, 500, and 1000 m). A ‘majority’ resampling methodology in ArcGIS (ESRI, CA) was 265 

employed, whereby new ET values were assigned to each pixel based on the land cover type that 266 

comprised the majority of each larger pixel (Turner et al., 1989). All resampling is done based on 267 

original 1 m x 1 m daily ET values, as opposed to resampling from a previous aggregation (Bian 268 

and Butler, 1999; Wu, 2004). 269 

 270 

Validating the PM model using eddy covariance measurements and a flux footprint model 271 

Two eddy covariance (EC) systems are used to measure water fluxes for validation of modelled 272 

ET. One EC system, located 3 m above the northern regenerating stand, represents highly 273 

localised fluxes representative of the regenerating stand. A second EC system, located 22.5 m 274 

above the southern regenerating stand, represents a range of different land cover influences on 275 

ET in addition to the harvested area directly in the footprint of the EC system (due to the larger 276 

footprint size of the tower) (Figure 2). Within both regenerating aspen uplands vegetation was 277 



12 
 

sparse and remained <50 cm in height, and as a result instrument height above ground surface is 278 

considered approximately equal to instrument height above the newly regenerating canopy.  279 

 Both sites were equipped with a three-dimensional sonic anemometer (CSAT 3, 280 

Campbell Scientific, AB Canada) and an open-path infrared gas analyzer (IRGA) (LI7500, LI-281 

COR Inc., Lincoln, NE) and estimate water fluxes from ecosystems at a sampling rate of 20 Hz, 282 

averaged to half-hourly periods (Brown et al., 2010; Petrone et al., 2015). EC data were filtered 283 

for periods of low turbulence (u* < 0.23 m s-1 based on the inflection point of u* in relation to 284 

energy balance closure) and corrected for density effects (Webb et al., 1980; Leuning and Judd, 285 

1996), coordinate rotation (Kaimal and Finnigan, 1994), and sensor separation (Leuning and 286 

Judd, 1996). As a final correction, energy balance closure was calculated and forced for the study 287 

period to account for any differences between turbulent fluxes and available energy (Blanken et 288 

al., 1997; Twine et al., 2000; Petrone et al., 2001; Barr et al., 2006). Following these quality 289 

control steps, approximately 35% of data was lost and subsequently gap filled using the mean 290 

over 14-day periods (Falge et al., 2001).  291 

 To validate ET modelled at varying pixel sizes (1, 10, 25, 250, 500, and 1000 m) with EC 292 

estimates at flux towers the spatial influences on temporally-varying fluxes needs to be 293 

determined. To do this, a weighted flux footprint parameterisation (Kljun et al. 2015) with a 294 

pixel size of 1 m was used to model the spatial extent of the footprint (Figure 2), such that the 295 

footprint area is used to map the probability of water (or CO2, CH4, etc.) flux into the atmosphere 296 

as a function of atmospheric turbulence, instrument height, wind speed, and wind direction 297 

measured during each half hourly period. .  298 

 Following Chasmer et al. (2011), weighted probability density functions (PDF) extending 299 

to 80% of the total probability were calculated every 30 minutes and summed to daily footprints. 300 
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The result is a raster grid of the spatio-temporal footprint model where each 1 m2 pixel is 301 

assigned a weighting based on its probability to contribute a water flux to the eddy covariance 302 

measurements (Figure 2). This unique weighting for each pixel was then used as a multiplier to 303 

either increase or decrease the importance of modelled ET pixels within the footprint of the EC 304 

systems. This reduces uncertainty in the validation of modelled vs. measured fluxes because, 305 

instead of comparing EC estimates of ET (which is directional) with landscape-scale average 306 

modelled ET, this method instead applies the same directionality to the modelled fluxes 307 

(Hopkinson et al. 2016), thereby reducing comparisons with modelled values originating from 308 

other parts of the ecosystem that were not measured by EC at that point in time.   309 

 Flux footprints were eliminated for non-ideal days (i.e. during periods of poor weather, 310 

low atmospheric stability, or questionable data periods). The lower sensor height of the 3 m EC 311 

system, as well as the tall aspen canopy surrounding the tower, resulted in stable atmospheric 312 

conditions experienced more frequently relative to the tall 22.5 m tower measuring above the 313 

aspen canopy. As  a result, 72 days of footprint data were available for the 22.5 m EC tower and 314 

22 days were available for the 3 m EC tower. The extraction and validation of modelled ET 315 

within flux footprints is repeated for daily cumulative ET modelled at pixel sizes of 1, 10, 25, 316 

250, 500, and 1000 m to determine the influence of sensor pixel size on model accuracy within 317 

heterogeneous environments. When validating ET modelled at pixel sizes >1 m2
,  larger pixels 318 

were resampled to 1 m2 in order to standardize and match the number of ET pixels that were 319 

multiplied by PDF flux footprint pixels.  320 

 321 

Figure  2: Cumulative weighted flux footprints from: a) 3m; and b) 22.5m EC towers for the 322 

study period June 1 to Aug 31. 323 

 324 
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Results 325 

Footprint Climatology  326 

The dominant wind direction observed at the 3 m EC tower was between 330 - 355o, following 327 

the long axis of the north regenerating aspen upland that the tower is situated in (Figure 2a). 328 

Daily flux footprints extended up to 500 m upwind of the EC system, and footprint margins 329 

extended out of the homogeneous regenerating aspen stand approximately 60% of the time as a 330 

result of wind direction and neutral atmospheric stability. However, the probability that the point 331 

of maximum flux contribution (xmax) extended outside of the regenerating aspen upland remained 332 

less than 10%.  333 

 The dominant wind direction observed at the 22.5 m EC tower was between 220 - 280o 334 

(Figure 2b). In the early half of the study period unstable atmospheric conditions resulted in 335 

smaller flux footprints for this site, extending up to 1 km from the EC tower and originating from 336 

variable wind directions, while more stable atmospheric conditions promoted larger flux 337 

footprints during the middle-to-late portion of the study period, frequently occurring from the 338 

dominant wind direction (220 - 280o) and extending up to 3 km upwind of the tower into a 339 

variety of heterogeneous land cover types. Consequently, while the composition of the footprint 340 

surrounding the 3 m tower was relatively homogeneous, the footprint surrounding the 22.5 m 341 

tower was far more heterogeneous. Within the season-average footprint surrounding the 22.5 m 342 

tower 60% of the land area was mixed-wood aspen upland, 13% peatland, 10% pond, 12% 343 

riparian, and 5% regenerating aspen, though the contribution of each of these land cover types 344 

was highly variable from one day to the next. 345 

 346 
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Comparing modelled ET and eddy covariance methods within footprints  347 

Cumulative measured ET in the footprint surrounding the 3 m EC tower was 54 mm over a 22-348 

day period of measured EC data (Figure 3a). During the same period,  ET modelled at a pixel 349 

size of 1 m within flux footprints totalled 60 mm, and showed no significant difference (Mann-350 

Whitney Rank Sum Test, p>0.05) from measured ET (Table 2). Increasing pixel sizes of 351 

modelled ET to 10 or 25 m resulted in little change in agreement with measured ET. At pixel 352 

sizes of 10 and 25 m modelled ET overestimated measured ET by 8 mm (14%) and 9 mm (15%), 353 

respectively, and neither size showed a significant difference (Mann-Whitney Rank-Sum Test, 354 

p>0.05) with measured ET. Increasing pixel size to 250 m results in a 16 mm (30%) 355 

overestimation when modelled ET was compared to measured ET. A similar trend is observed 356 

when pixel size was increased to 500 and 1000 m, where both of these pixel sizes overestimate 357 

measured ET by 20 mm (36%) (Figure 4). 358 

 359 

 360 

Figure 3: Eddy covariance measured ET and cumulative ET estimated at each pixel size and 361 

extracted from flux footprints surrounding the: a) 3m EC tower; and b) 22.5m tower.  362 

 363 

 364 

 Cumulative measured ET at the 22.5 m EC tower was 164 mm over a 72-day period of 365 

measured (Figure 3b). Over the same period cumulative ET modelled at a 1 m pixel size was 180 366 

mm and overestimated measured ET by 16 mm (10%). Significant differences (Mann-Whitney 367 

Rank Sum Test, p<0.05) were observed between ET modelled at a pixel size of 1 m and 368 

measured values (Table 3). Increasing pixel size of modelled ET to 10 and 25 m resulted in 369 

overestimates of 31 mm (19%) and 34 mm (20%), respectively, relative to measured ET in the 370 
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footprint surrounding the 22.5 m tower (Figure 4). Increasing pixel sizes further to 250, 500, and 371 

1000 m yields similar results to those observed within the 3 m EC footprint, where these pixels 372 

are frequently larger than the land cover types within the flux footprint, and in some cases are 373 

larger than the footprint itself (Figure 4). 374 

 375 

Table 2 376 

 377 

Table 3 378 

  379 

Figure 4: residual between eddy covariance ET measurements at the 3 m and 22.5 m EC towers 380 

relative to ET modelled at pixel sizes of 1, 10, 25, 250, 500, and 1000 m. 381 

   382 

Scaling and assessing errors in ET estimates beyond the tower footprint 383 

As estimates of ET at a pixel size of 1 m proved to be closest to measured ET within the flux 384 

footprints of both validation towers, these 1 m estimates were used as a basis to assess error in 385 

modelled ET when scaled to the 5 km x 5 km study site (i.e. outside of EC flux footprints). At a 386 

pixel size of 1 m cumulative modelled ET for the 5 km study area ranged between 151 - 239 mm 387 

with an average of 162 ± 50 mm (Table 4), of which 62% was from mature aspen forests, 16% 388 

was from treed peatlands, 9% was from riparian zones, 8% was from open peatlands, 5% was 389 

from ponds, and 1% was from regenerating aspen stands (Table 5). Over a 90 day modelling 390 

period, the greatest ET rates were observed in mature upland aspen stands (216 mm average) and 391 

ponds (210 mm average) while lowest ET was observed in riparian (158 mm average) areas and 392 

recently harvested regenerating aspen stands (151 mm average).  393 
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 The greatest spatial variability in modelled ET, as indicated by the range in standard 394 

deviations for ET modelled within each land cover type, was seen at land cover boundaries 395 

where sharp transitions exist in canopy structure (Figure 5a). The influence of edges was 396 

assessed by examining average ET (+/- standard deviation) within 10 m of edges compared to 397 

ET rates in the center of large land covers such as mature aspen stands and large ponds. 398 

Variability in modelled ET within 10 m of edges was, on average, 20-30% greater than ET 399 

modelled at the center of large land covers. Higher than average variability in ET was also 400 

evident in rough or patchy canopies which promote turbulent mixing. This was most pronounced 401 

in peatlands and transitional riparian zones (Figure 5a) where a uniform canopy is not present 402 

and standard deviations of ET values were twice as large as those observed in mature and 403 

regenerating forested uplands. 404 

 405 

Table 4. 406 

 407 

Table 5. 408 

 409 

Figure 5: ET estimates for the 5 km x 5 km study site at pixel sizes of: a) 1 m ; b) 10 m ; c) 25 410 

m ; d) 250 m ; e) 500 m; and f) 1000 m.  411 

 412 

 Increasing the pixel size of modelled ET to 10 and 25 m resulted in site-scale average ET 413 

increasing to ~165 mm  (Table 4) with subtle (+/- 1%) changes in the contribution of each land 414 

cover to total ET in the study area (Table 5), where boundaries of smaller land covers such as 415 

treed peatlands and riparian zones were misclassified as adjacent open peatlands and ponds 416 

(Figure 6ba,b). These changes in land cover contribution to total ET were coincident with a 417 
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~17% decline in site-wide variability (standard deviation) of modelled ET at 10 and 25 m pixel 418 

sizes, relative to 1 m values (Figure 5b,c). 419 

 Further increasing the pixel size of modelled ET to 250 m resulted in site-scale average 420 

ET increasing to 167 ± 39 mm and a 21% decline in the spatial variability of ET relative to 1 m 421 

values. The decline in ET heterogeneity across the study site is reflected in the contribution of 422 

each land cover to total ET (Table 5), particularly in regenerating aspen stands which are 423 

underestimated by 38% relative to regenerating aspen ET values modelled at a pixel size of 1 m. 424 

ET modelled in ponds and treed peatlands is underestimated by 6 and 8%, respectively, and ET 425 

from open peatlands is overestimated by 10% (Figure 6c) relative to 1 m values in each of these 426 

land cover types. Additionally, while maximum ET (ETmax) rates of 450 mm were evident when 427 

modelled using a pixel size of 1 m, ETmax was 320 mm when modelled at a pixel size of 250 m 428 

due to the loss of edges. 429 

 Increasing the pixel size of modelled ET to 500 m results in a site-scale average ET 430 

estimate of 171 ± 36 mm and a 28% decline in the spatial variability of ET relative to 1 m 431 

values. At a pixel size of 500 m  the contribution of each land cover to the site-average ET is 432 

significantly different relative to 1 m values, where ET from ponds and open peatlands is 433 

overestimated by 102 and 150%, respectively, and ET from treed peatlands, riparian zones, and 434 

regenerating aspen stands are underestimated by 52, 100, and 100 %, respectively (Table 5).  435 

 There were similar results for 1000 m pixels, where the spatial variability in ET is 436 

underestimated by 79% relative to 1 m values. Riparian zones and regenerating aspen stands are 437 

eliminated (Figure 5f) from the landscape, while treed peatlands are underestimated by 75% and 438 

ponds and open peatlands are overestimated by 160 and 114%, respectively, relative to values at 439 

a pixel size of 1 m in each of these land cover types (Table 5). 440 
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 441 

Figure 6: Difference in cumulative ET estimates between 1m x 1m ET estimates and ET 442 

estimated at pixel sizes of: a) 10 m; b) 25 m; c) 250 m; d) 500 m; and e) 1000 m. Blue pixels 443 

indicate where resampled pixels overestimate 1 m ET estimates; red pixels indicate where 444 

resampled pixels underestimate 1 m ET estimates.  445 

 446 

Discussion 447 

Modelled ET within Eddy Covariance Footprints  448 

ET estimated at a pixel size of 1 m were most similar to measured ET at the 3 m and 22.5 m 449 

towers, and were comparable to ranges of uncertainty found at other study sites using high 450 

(Loheide and Gorelick, 2005) and low (Cleugh et al., 2007; Li et al., 2008) resolution ET 451 

models. For a given pixel size, stronger agreement was observed between measured and 452 

modelled ET in smaller footprints because the footprint was more likely to be comprised of a 453 

single homogeneous land cover type. This is observed at the 3 m EC tower where xmax remained 454 

within the northern regenerating aspen upland for ~90% of the study period and measurements 455 

from the EC system are characterized by a homogeneous land cover which is suitably resolved 456 

using 1, 10, and 25 m pixel sizes. Small declines in accuracy observed with 10 and 25 m pixels 457 

are due to the partial loss of edges surrounding the regenerating stand which enhance turbulence 458 

and promote ET. Larger footprints, however, extend in to a variety of land covers with variable 459 

ET regimes, resulting in contamination and uncertainty in observations between measured and 460 

modelled ET for a given pixel size. This is observed at the 22.5 m tower, where the flux footprint 461 

extends up to 3 km into a variety of land cover types and ET estimated at a pixel size of 10 m are 462 

significantly different and disagree with measured ET by 19%.   463 
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 Regardless of how homogeneous a flux footprint is, the ability to utilize remote sensing 464 

platforms to accurately predict ET is largely dependent on a sensor's ability to resolve canopy 465 

structural characteristics, landscape distribution, and landscape edges. Consequently, ET 466 

modelled at the finest pixel size provided the closest agreement with measured ET, as 1 m pixel 467 

estimates were able to suitably represent the same vegetation structural characteristics that were 468 

driving ET measured at the EC system. This is particularly important in narrow land covers such 469 

as riparian zones and fragmented wetlands which serve as corridors between larger forest patches 470 

(O’Neill et al., 1996) and often play a crucial role in characterizing the regional water balance 471 

(Kimball et al., 1999; Chen et al., 2007).  As pixel size increases, pixels become larger than the 472 

areal extent of land cover patches and vegetation structural characteristics are generalized, 473 

resulting in a loss of landscape heterogeneity and a decline in the spatial variability of ET 474 

estimates (Turner et al., 1989; O’Neill et al., 1996; Kustas and Norman, 2000; Kustas et al., 475 

2004; Nagler et al., 2005; McCabe and Wood, 2006; Li et al., 2008). Wu et al., (2004) observed 476 

similar results in Boreal regions where the number of landscape patches followed a decreasing 477 

trend as pixel size declined.  478 

 Such declines in heterogeneity result in overestimations of ET in the western Boreal 479 

Plains as small land cover types are misclassified as the spatially dominant aspen uplands, which 480 

are characterized by a greater LAI and higher ET rates relative to the ponds, peatlands, and 481 

riparian zones which they eliminate from the landscape at larger pixel sizes. This was observed 482 

in modelled results with the elimination of riparian zones and regenerating aspen uplands from 483 

the landscape at pixel sizes of 500 and 1000 m. Additionally, depending on the fragmented 484 

nature of a heterogeneous landscape, thresholds can be crossed beyond which variable sensor 485 

resolutions yield static results, as was evident where ET estimates at pixel sizes of 500 and 1000 486 
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m are identical within flux footprints of both EC towers due to pixel size being larger than the 487 

areal extent of the land cover patches within the flux footprint. 488 

 Land cover edge effects, which are an important contributor to measured ET in 489 

heterogeneous landscapes due to step changes in air flow (Oke, 1987; Liu et al., 1996), also 490 

become increasingly generalized as pixel size increases (Wu et al., 2004). The influence of 491 

edges, which may be manifested as stand-alone shrubs within regenerating aspen stands to sharp 492 

transition zones between land cover types, are observed within this study and often represent 493 

ETmax within a land cover type.  As a result, the accuracy of modelled ET sharply declines when 494 

the pixel size becomes larger than individual patches of vegetation found within land cover types 495 

(O’Niell et al. 1996; Kustas et al. 2004) and, although modelled ET rates were observed to 496 

overestimate measured ET with increasing pixel size, ETmax declines from 450 to 186 mm (Table 497 

4) when scaling from 1 to 1000 m resolutions as edges are generalized at landcover boundaries. 498 

Although this is particularly pronounced in heterogeneous landscapes such as the western Boreal 499 

Plains, McCabe and Wood (2006) noted a similar trend in decreasing variability and accuracy of 500 

latent heat fluxes when scaling from 120 m to 1020 m pixels in heterogeneous agricultural 501 

watersheds. Ershadi et al. (2013) also noted changes in roughness lengths around land cover 502 

borders at large (>240 m) pixel sizes and found increasingly coarse pixels to underestimate latent 503 

heat fluxes by up to 15% with the SEBS model. Consequently, the areal extent of the smallest 504 

land cover unit of interest must be taken into consideration when choosing a suitable pixel size 505 

for modelling initiatives. O’Neill et al. (1996) note that pixel size should be 2 to 5 times smaller 506 

than the smallest feature of interest, and the current study confirms these findings.  507 

 508 

Identifying sensor resolutions appropriate for heterogeneous environments 509 
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Evaluating incremental shifts in the accuracy of changing pixel sizes provides insight into 510 

threshold responses of sensors within varying footprint compositions. The most pronounced shift 511 

in accuracy associated with a change in sensor is observed at different pixel sizes depending on 512 

the heterogeneity of the flux footprint. Within homogeneous footprints (e.g. those surrounding 513 

the 3 m EC tower) the most pronounced shift in the accuracy of modelled ET was observed when 514 

pixel size was changed from 25 to 250 m, suggesting that 1, 10, and 25 m pixels can suitably 515 

represent the vegetation structural parameters driving ET within the homogeneous footprint. 516 

Contrary to this, the most pronounced shift in the accuracy of modelled ET within heterogeneous 517 

footprints (e.g. those surrounding the 22.5 m tower) was observed when pixel size was changed 518 

from 1 to 10 m as well as from 25 to 250 m. Because the significantly larger and more 519 

heterogeneous footprint surrounding the 22.5 m tower extends up to 3 kilometers into a variety 520 

of land cover types characteristic of this region, small changes in pixel size can have pronounced 521 

implications on the ability of models to appropriately characterize vegetation structural 522 

characteristics and land cover edges.  523 

 Switching between mid (250 m) and coarse (500-1000 m) pixel sizes resulted in less 524 

pronounced changes in the accuracy of modelled ET, suggesting that within this range users of 525 

remote sensing data may not experience statistically significantly better results from using 250 m 526 

data over 500 or 1000 m data within heterogeneous landscapes, as each of these pixel sizes are 527 

unable to suitably characterize vegetation structural characteristics influencing ET. This is 528 

particularly true of 500 and 1000 m data, which showed no difference in the accuracy of 529 

modelled ET between pixel sizes relative to EC data. Such results indicate that ET predictions in 530 

heterogeneous environments benefit from utilizing the finest pixel remote sensing data available, 531 

while larger pixels can be suitably applied to homogeneous environments, although the "best" 532 
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pixel size is largely contextual and dependent on the spatial extent of homogeneity in the area of 533 

interest (Wu et al., 2004; Zhao et al., 2015).   534 

 535 

Conclusions 536 

ET estimates at pixel sizes of 1 m x 1 m were scaled to increasingly coarse sizes (10, 25, 250, 537 

500, 1000 m) characteristic of commonly available remote sensing data products. The objective 538 

was to determine the accuracy of ET estimates derived from a variety of pixel sizes within a 539 

heterogeneous environment. Comparison with measured EC data demonstrated that, within flux 540 

footprints, 1 m ET estimates were the most accurate and subsequent scaling to larger pixels lead 541 

to decreased accuracy due to the misrepresentation of land cover types and boundaries when 542 

pixel size is larger than the fragments of land cover types within a pixel. Mixed-wood aspen 543 

uplands dominate the western Boreal Plains landscape and are fragmented by relatively small 544 

ponds, peatlands, and riparian zones. Consequently, increasing pixel size results in the loss of ET 545 

heterogeneity as these relatively small land cover types are outweighed and misclassified as the 546 

spatially-dominant mixed-wood aspen uplands, resulting in a net overestimation of ET.  547 

 The results of this study demonstrate the benefit of using datasets with the smallest pixel 548 

size available within biogeochemical and/or land surface models applied to heterogeneous 549 

environments. Often times, ecosystems are not entirely homogeneous and are becoming 550 

increasingly fragmented. While two-dimensional (spectral) datasets provide some indication of 551 

foliage area at a snap-shot in time, three-dimensional datasets acquired using LiDAR provide 552 

additional information on canopy roughness and the impacts of ecosystem boundaries on fluxes. 553 

This will no doubt become important for planning and land use monitoring in northern regions 554 
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where increased warming will exacerbate the sensitivity of ecosystems to drought (Michaelian et 555 

al. 2011).   556 
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λ = latent heat of vaporization [MJ kg-1] 

Δ = slope of the vapour pressure curve [kPa oC-1] 

ρa =  density of the air [kg m-3] 

ϒ = psychrometric constant [kPa oC-1] 
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 Table 1: Type of tower, instrument height above ground surface, dominant vegetation, areal 
coverage, mean leaf area index (LAI) and standard deviation, and mean cumulative ET for each 
dominant land cover type in the study area. ET values are modelled using spatially explicit 1 m x 
1 m vegetation structural characteristics and measured hydro-meteorologic parameters associated 
with each land cover (see model description in text). 

 
  

Tower type Instrument 
height (m) 

Landcover  Number of 
Towers 

Dominant species Coverage 
(%) 

LAI Mean ET 
(mm) 

Eddy 
covariance 

 
 

Eddy 
covariance 

 
 

Energy balance 

3 
 
 
 

22.5 
 
 
 
3 

Upland 
regeneration 

 
 

Upland 
regeneration 

 
 

Upland 
regeneration 

1 
 
 
 

1 
 
 
 

2 

Populus balsamifera 
L, Salix spp., 

Amelanchier alnifolia, 
Rosa acicularis, 
Viburnum edule, 

Cornus Canadensis, 
Epilobium 

angustifolium, 
Calamagrostis 

canadensis 
 

 
1 

0.36 
(1.23) 

151.43 

Energy balance 3 Mature 
mixedwood 

2 Populus tremuloides, 
Populas balsamifera 

Rosa acicularis 
 

58 1.40 
(2.08) 

216.05 

Energy balance 3 Riparian 2 Populus balsamifera, 
Picea marianca, 

Populus tremuloides, 
Betula papyrifera 

 

11 1.20 
(1.11) 

157.92 

Energy balance 3 Treed 
peatland 

2 Picea marianca, 
Sphagnum spp. 

 

8 
 

2.01 
(3.16) 

184.08 

Energy balance 3 Open 
Peatland 

2 Sphagnum spp. 
 
 

17 0.10 
(0.60) 

198.02 

Energy balance 3 Pond 1 See text. 5 N/A 209.83 
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Table 2: Difference between cumulative modelled ET at each pixel size within PDF flux 
footprints and eddy covariance data for all days with suitable atmospheric stability to calculate 
PDF flux footprints at the 3 m northern tower. Statistical differences determined using the Mann-
Whitney Rank-Sum Test with a 95% confidence interval. 
 

Resolution 
 

Modelled 
ET (mm) 

Overestimation 
(mm) 

Overestimation 
(%) 

Significant Difference from EC? 
 

Measured 54.48 -- -- -- -- 

1m 60.31 5.83 10.71 No N = 22, p = 0.484, r2 = 0.602 

10m 62.09 7.61 13.97 No N = 22, p = 0.283, r2 = 0.611 

25m 62.72 8.24 15.13 No N = 22, p = 0.170, r2 = 0.625 

250m 70.86 16.38 30.07 Yes N = 22, p = 0.002, r2 = 0.749 

500m 74.00 19.52 35.83 Yes N = 22, p < 0.001, r2 = 0.566 

1000m 74.00 19.52 35.83 Yes N = 22  p < 0.001, r2 = 0.603 
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Table 3: Difference between cumulative modelled ET at each pixel size within PDF flux 
footprints and eddy covariance data for all days with suitable atmospheric stability to calculate 
PDF flux footprints at the 22.5 m southern tower. Statistical differences determined using the 
Mann-Whitney Rank-Sum Test with a 95% confidence interval. 

 
Resolution 
 

Modelled 
ET (mm) 

Overestimation 
(mm) 

Overestimation 
(%) 

Significant Difference from EC?  
 

Measured 164.61 -- -- -- -- 

1m 180.29 16.29 9.93 Yes N = 72; p<0.001, r2 = 0.206 

10m 195.31 31.31 19.09 Yes N = 72; p<0.001, r2 = 0.201 

25m 198.28 34.28 20.90 Yes N = 72; p<0.001, r2 = 0.201 

250m 212.17 48.17 29.37 Yes N = 72; p<0.001, r2 = 0.213 

500m 224.70 60.70 37.01 Yes N = 72; p<0.001, r2 = 0.275 

1000m 224.70 60.70 37.01 Yes N = 72; p<0.001, r2 = 0.275 
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Table 4: Average ET ± standard deviation, and maximum ET modelled at each pixel size for the 
5 km x 5 km study area. 

Resolution Average ET (mm) Standard Deviation (mm) Maximum (mm) 

1m 161.53 50.02 450 

10m 165.59 41.34 352 

25m 165.3 41.89 345 

250m 167.43 39.49 320 

500m 171.40 35.93 314 

1000m 176.00 10.69 186 
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Table 5: Percent contribution of each land cover type to total landscape ET at each pixel size for 
the 5 km x 5 km study site. 

Land Cover 1m 10m 25m 250m 500m 1000m 

Pond 5.23 5.26 5.25 4.94 10.57 13.60 
Open Peatland 7.98 8.08 8.02 8.83 19.96 17.11 
Treed Peatland 15.62 15.69 15.81 14.37 7.42 3.98 
Riparian 8.69 8.67 8.63 8.61 0.00 0.00 
Regenerating 0.60 0.60 0.60 0.38 0.00 0.00 
Mature mixed-wood 61.87 61.74 61.69 62.88 62.05 65.32 
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