226 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Light regulation of metabolic pathways in fungi

    Get PDF
    Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes

    Observation of electroweak production of two jets and a Z-boson pair

    Get PDF
    Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton–proton collision data corresponding to an integrated luminosity of 139 fb−1 recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7σ, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

    Get PDF
    The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.ANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFW, AustriaAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)SSTC, BelarusNational Council for Scientific and Technological Development (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of CanadaCanada Foundation for InnovationNational Natural Science Foundation of China (NSFC)Departamento Administrativo de Ciencia, Tecnología e Innovación ColcienciasMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentCzech Republic GovernmentDNRF, DenmarkDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceFederal Ministry of Education & Research (BMBF)Max Planck SocietyGreek Ministry of Development-GSRTRGC and Hong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of ScienceCNRST, MoroccoRCN, NorwayPortuguese Foundation for Science and TechnologyMNE/IFA, RomaniaMES of RussiaMESTD, SerbiaMSSR, SlovakiaSlovenian Research Agency - SloveniaMIZS, SloveniaSpanish GovernmentSRC, SwedenWallenberg Foundation, SwedenSNSF Geneva, SwitzerlandMinistry of Science and Technology, TaiwanMinistry of Energy & Natural Resources - TurkeyScience & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDF, CanadaCANARIE, CanadaCRC, CanadaEuropean Research Council (ERC)European Union (EU)French National Research Agency (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationGreek NSRF, GreeceBSF-NSF, IsraelGerman-Israeli Foundation for Scientific Research and DevelopmentLa Caixa Banking Foundation, SpainCERCA Programme Generalitat de Catalunya, SpainPROMETEO, SpainGenT Programmes Generalitat Valenciana, SpainGoran Gustafssons Stiftelse, SwedenRoyal Society of LondonLeverhulme TrustNRC, CanadaCERNANID, ChileChinese Academy of SciencesMinistry of Science and Technology, ChinaSRNSFG, GeorgiaHGF, GermanyNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentMinistry of Science and Higher Education, PolandNCN, PolandNRCKI, Russia FederationJINRDST/NRF, South AfricaSERI, Geneva, SwitzerlandCantons of Bern and Geneva, SwitzerlandCompute Canada, CanadaHorizon 2020Marie Sklodowska-Curie ActionsEuropean Cooperation in Science and Technology (COST)EU-ESF, Greec

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson

    Search for bottom-squark pair production in pp collision events at √s=13 TeV with hadronically decaying τ-leptons, b-jets, and missing transverse momentum using the ATLAS detector

    Get PDF
    A search for pair production of bottom squarks in events with hadronically decaying τ -leptons, b -tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at √ s = 13     TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139     fb − 1 . The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino ˜ χ 0 2 and a bottom quark, with ˜ χ 0 2 decaying into a Higgs boson and the lightest neutralino ˜ χ 0 1 . The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying τ -leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the ˜ χ 0 2 , where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between ˜ χ 0 2 and ˜ χ 0 1 . Model-independent upper limits are also set on the cross section of processes beyond the Standard Model

    Search for long-lived neutral particles produced in pp collisions at √s = 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer

    Get PDF
    A search is presented for pair production of long-lived neutral particles using 33     fb − 1 of √ s = 13     TeV proton–proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes c τ from 5 cm to 1 m

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb

    Measurement of the energy asymmetry in t(t)over-barj production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb1139\,{\mathrm {fb}}^{-1} 139 fb - 1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV\sqrt{s}=13\,\text {TeV} s = 13 TeV . The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic ttˉt{\bar{t}} t t ¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV350\,\text {GeV} 350 GeV . The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be 0.043±0.020-0.043\pm 0.020 - 0.043 ± 0.020 , in agreement with the SM prediction of 0.037±0.003-0.037\pm 0.003 - 0.037 ± 0.003 . Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits
    corecore