21 research outputs found

    Synergistic Effect of Vitamin C on DNA Damage Induced by Cadmium

    Get PDF
    Abstract. Salts of divalent cadmium are well-known human mutagens and carcinogens. In the present work, the ability of vitamin C to modulate genotoxic effects of cadmium chloride on human lymphocytes was assessed using single cell gel electrophoresis (comet assay). Vitamin C at 20 and 100 ”mol/l and cadmium at 5, 30 and 150 ”mol/l significantly increased the tail moment of lymphocytes. Vitamin C also increased the tail moment of cells exposed to cadmium. This effect was concentration-dependent: the higher the vitamin C concentration the greater the tail moment. The combined effects of cadmium and vitamin C were more pronounced at all concentrations tested than the sum of the effects of the compounds applied separately (p < 0.05), so cadmium and vitamin C can be considered to have synergistic effects. The results obtained can be partly explained by the participation of cadmium in the Fenton reaction and reduction of its oxidized form by vitamin C

    Nycthemeral and Monthly Occupation of the Fish Assemblage on a Sheltered Beach of BaĂ­a Norte, FlorianĂłpolis, Santa Catarina State, Brazil

    Get PDF
    Interpreting fish community records is challenging for several reasons, including the lack of past ichthyofauna data, the cyclical temporal variations in the community, and the methodology employed, which usually underestimates fish assemblages. The objective of this study was to describe short-scale and meso-scale (nycthemeral period and months, respectively) temporal variations in the ichthyofauna composition and structure of a sheltered beach of Baía Norte (Florianópolis, Santa Catarina state, Brazil), using a capéchade net. Samples were collected monthly for a period of 48 hours. During the period from December 2010 to November 2011, a total of 19,302 individuals belonging to 89 species and 39 families were captured. The number of individuals that were sampled during the day and/or night was dependent on the sampling month. On average, the daytime assemblage was more abundant and different in structure and composition than the nighttime assemblage. Of the eight species that had the highest Index of Relative Importance (%IRI), five had higher variations (ANOVA F) between the day and night than between the months. This finding reinforced the need for sampling during both the day and night. The capéchade net effectively captured demersal and pelagic individuals in a broad range of sizes

    Effects of ocean sprawl on ecological connectivity: impacts and solutions

    Get PDF
    The growing number of artificial structures in estuarine, coastal and marine environments is causing “ocean sprawl”. Artificial structures do not only modify marine and coastal ecosystems at the sites of their placement, but may also produce larger-scale impacts through their alteration of ecological connectivity - the movement of organisms, materials and energy between habitat units within seascapes. Despite the growing awareness of the capacity of ocean sprawl to influence ecological connectivity, we lack a comprehensive understanding of how artificial structures modify ecological connectivity in near- and off-shore environments, and when and where their effects on connectivity are greatest. We review the mechanisms by which ocean sprawl may modify ecological connectivity, including trophic connectivity associated with the flow of nutrients and resources. We also review demonstrated, inferred and likely ecological impacts of such changes to connectivity, at scales from genes to ecosystems, and potential strategies of management for mitigating these effects. Ocean sprawl may alter connectivity by: (1) creating barriers to the movement of some organisms and resources - by adding physical barriers or by modifying and fragmenting habitats; (2) introducing new structural material that acts as a conduit for the movement of other organisms or resources across the landscape; and (3) altering trophic connectivity. Changes to connectivity may, in turn, influence the genetic structure and size of populations, the distribution of species, and community structure and ecological functioning. Two main approaches to the assessment of ecological connectivity have been taken: (1) measurement of structural connectivity - the configuration of the landscape and habitat patches and their dynamics; and (2) measurement of functional connectivity - the response of organisms or particles to the landscape. Our review reveals the paucity of studies directly addressing the effects of artificial structures on ecological connectivity in the marine environment, particularly at large spatial and temporal scales. With the ongoing development of estuarine and marine environments, there is a pressing need for additional studies that quantify the effects of ocean sprawl on ecological connectivity. Understanding the mechanisms by which structures modify connectivity is essential if marine spatial planning and eco-engineering are to be effectively utilised to minimise impacts

    Incorporating ecological functioning into the designation and management of marine protected areas

    No full text
    Marine protected areas are generally designed and managed on the basis of the presence and extent of specific habitat types or the habitats of important species. However, it has become clear that in addition to including these 'structural' elements of marine systems, management strategies should incorporate a consideration of the functional aspects of the ecosystems. Biological traits analysis (BTA) has been successfully used to describe ecological functioning in marine benthic systems. BTA uses a number of biological characteristics expressed by the taxa present as indicators of key ecosystem functions. Two expert workshops were used to examine the potential for the application of BTA in the designation and management of MPAs. They concluded that BTA represented the best tool currently available for quantifying ecological functioning and agreed on 10-key ecological functions delivered by marine benthic communities. Twenty-four biological traits were also identified by the workshops as indices of these ten functions. In order to demonstrate the practical utility of the approach, BTA using these traits, was applied to a dataset covering benthos from within and around the proposed Eddystone Special Area of Conservation (SW England). The case study demonstrated that with the type of data normally available from conservation assessment type surveys, and a knowledge of the relevant biological traits, it is possible to use a consideration of ecological functioning to set boundaries for the MPA and to inform the site management objectives. The use of structure and function information to inform the designation process and subsequent management of marine protected areas is discussed
    corecore