62 research outputs found

    Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals, and plants have to say?

    Get PDF
    A gas-exchange structure interacts with the environment and is constantly challenged by contaminants that may elicit defense responses, thus compromising its primary function. It is also exposed to high concentrations of O2 that can generate reactive oxygen species (ROS). Revisiting the lung of mammals, an integrative picture emerges, indicating that this bronchi-alveolar structure deals with inflammation in a special way, which minimizes compromising the gas-exchange role. Depending on the challenge, pro-inflammatory or antiinflammatory responses are elicited by conserved molecules, such as surfactant proteins A and D. An even broader picture points to the participation of airway sensors, responsive to inflammatory mediators, in a loop linking the immunological and nervous systems and expanding the role played by respiratory organs in functions other than gas-exchange. A byproduct of exposure to high concentration of O2 is the formation of superoxide (), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and other ROS, which are known to be toxic to different types of cells, including the lung epithelium. A balance between antioxidants and oxidants exists; in pulmonary epithelial cells high intracellular and extracellular levels of antioxidants are found. Antioxidant adaptations related to plant and animal life-styles involve a broad range of overlapping strategies based on well-conserved molecules. Glutathione (GSH) is an abundant and ubiquitous thiol-tripeptide antioxidant, also present in lungs, whose role in providing information on the intracellular redox state of animals and plants is well established. In these organisms, GSH influences gene expression associated with stress, maximizing defense responses. Several enzymatic antioxidants, such as glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and glucose 6-phosphate dehydrogenase participate in the redox system; in animals that are stress-tolerant GPx is a key element against oxidative assaults. Most importantly, alternative roles of ROS as signaling molecules have been found in all plants and animals. For example, alveolar macrophages produce that act as second messengers, in addition to having a bactericidal role. The nonradical ROS H2O2 signals inflammation in mammalian lungs, apoptosis in different animal tissues, and is also involved in stomatal closure, root development, gene expression, and defense responses of plants. Antioxidant adaptations in some water-breathing animals involve the excretion of H2O2 by diffusion through gas-exchange structures. The fine balance among a multitude of factors and cells makes the difference between damage and protection in animals and plants. Knowledge about the mechanisms and consequences of these molecular interactions is now starting to be integrate

    The Grizzly, April 18, 2019

    Get PDF
    Largest Number of Prospective Students Ever Visit Ursinus on Admitted Students Day • Board of Trustees Gets More Diverse • Ursinus Alumna Comes to Discuss Her 45-Year Career in Education • French Hangs up the Baton After 40 Years of Service • Planned Parenthood Club Aims to Increase Awareness of Reproductive Rights and Health on Campus • Q&A Senior Feature: Brittani Schnable • Opinions: Transgender Soldiers Should be Respected; What Contemporary Indie Could Learn from the Post-Punk Movement • The Nice Job Scoring the Game-Winning Goal in Overtime Award: Sam Mutz • Mopkins! Bears Pull Off Historic Sweep of Blue Jays • Softball Team Racks up Accolades Amid Season of Marked Improvementhttps://digitalcommons.ursinus.edu/grizzlynews/1619/thumbnail.jp

    Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals and plants have to say?

    Get PDF
    A gas-exchange structure interacts with the environment and is constantly challenged by contaminants that may elicit defense responses, thus compromising its primary function. It is also exposed to high concentrations of O2 that can generate reactive oxygen species (ROS). Revisiting the lung of mammals, an integrative picture emerges, indicating that this bronchi-alveolar structure deals with inflammation in a special way, which minimizes compromising the gas-exchange role. Depending on the challenge, pro-inflammatory or antiinflammatory responses are elicited by conserved molecules, such as surfactant proteins A and D. An even broader picture points to the participation of airway sensors, responsive to inflammatory mediators, in a loop linking the immunological and nervous systems and expanding the role played by respiratory organs in functions other than gas-exchange. A byproduct of exposure to high concentration of O2 is the formation of superoxide (), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and other ROS, which are known to be toxic to different types of cells, including the lung epithelium. A balance between antioxidants and oxidants exists; in pulmonary epithelial cells high intracellular and extracellular levels of antioxidants are found. Antioxidant adaptations related to plant and animal life-styles involve a broad range of overlapping strategies based on well-conserved molecules. Glutathione (GSH) is an abundant and ubiquitous thiol-tripeptide antioxidant, also present in lungs, whose role in providing information on the intracellular redox state of animals and plants is well established. In these organisms, GSH influences gene expression associated with stress, maximizing defense responses. Several enzymatic antioxidants, such as glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and glucose 6-phosphate dehydrogenase participate in the redox system; in animals that are stress-tolerant GPx is a key element against oxidative assaults. Most importantly, alternative roles of ROS as signaling molecules have been found in all plants and animals. For example, alveolar macrophages produce that act as second messengers, in addition to having a bactericidal role. The nonradical ROS H2O2 signals inflammation in mammalian lungs, apoptosis in different animal tissues, and is also involved in stomatal closure, root development, gene expression, and defense responses of plants. Antioxidant adaptations in some water-breathing animals involve the excretion of H2O2 by diffusion through gas-exchange structures. The fine balance among a multitude of factors and cells makes the difference between damage and protection in animals and plants. Knowledge about the mechanisms and consequences of these molecular interactions is now starting to be integrated

    Absence of polysialylated NCAM is an unfavorable prognostic phenotype for advanced stage neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expression of a neural crest stem cell marker, polysialic acid (polySia), and its main carrier, neural cell adhesion molecule (NCAM), have been detected in some malignant tumors with high metastatic activity and unfavorable prognosis, but the diagnostic and prognostic value of polySia-NCAM in neuroblastoma is unclear.</p> <p>Methods</p> <p>A tumor tissue microarray (TMA) of 36 paraffin-embedded neuroblastoma samples was utilized to detect polySia-NCAM expression with a polySia-binding fluorescent fusion protein, and polySia-NCAM expression was compared with clinical stage, age, <it>MYCN </it>amplification status, histology (INPC), and proliferation index (PI).</p> <p>Results</p> <p>PolySia-NCAM-positive neuroblastoma patients had more often metastases at diagnosis, and polySia-NCAM expression associated with advanced disease (<it>P </it>= 0.047). Most interestingly, absence of polySia-NCAM-expressing tumor cells in TMA samples, however, was a strong unfavorable prognostic factor for overall survival in advanced disease (<it>P </it>= 0.0004), especially when <it>MYCN </it>was not amplified. PolySia-NCAM-expressing bone marrow metastases were easily detected in smears, aspirates and biopsies.</p> <p>Conclusion</p> <p>PolySia-NCAM appears to be a new clinically significant molecular marker in neuroblastoma, hopefully with additional value in neuroblastoma risk stratification.</p

    Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers

    Get PDF
    BACKGROUND: Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. METHODS: To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. RESULTS: We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13(Z )(amplified at ZNF217 only) in 9.9%, and 20q13(Co )(co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13(Z )and 20q13(Co )(1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. CONCLUSION: Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio
    corecore