9 research outputs found

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution

    Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae - a prospective multicentre cohort study in six German university hospitals

    No full text
    Abstract Background Infections caused by third generation cephalosporin-resistant Enterobacteriaceae (3GCREB) are an increasing healthcare problem. We aim to describe the 3GCREB infection incidence and compare it to prevalence upon admission. In addition, we aim to describe infections caused by 3GCREB, which are also carbapenem resistant (CRE). Methods In 2014–2015, we performed prospective 3GCREB surveillance in clinically relevant patient specimens (screening specimens excluded). Infections counted as hospital-acquired (HAI) when the 3GCREB was detected after the third day following admission, otherwise as community-acquired infection (CAI). Results Of 578,420 hospitalized patients under surveillance, 3367 had a 3GCREB infection (0.58%). We observed a similar 3GCREB CAI and HAI incidence (0.28 and 0.31 per 100 patients, respectively). The most frequent pathogen was 3GCR E. coli, in CAI and HAI (0.15 and 0.12 per 100 patients). We observed a CRE CAI incidence of 0.006 and a HAI incidence of 0.008 per 100 patients (0.014 per 1000 patient days). Conclusions Comparing the known 3GCREB admission prevalence of the participating hospitals (9.5%) with the percentage of patients with a 3GCREB infection (0.58%), we conclude the prevalence of 3GCREB in university hospitals to be about 16 times higher than suggested when only patients with 3GCREB infections are considered. Moreover, we find the HAI and CAI incidence caused by CRE in Germany to be relatively low

    Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae - a prospective multicentre cohort study in six German university hospitals

    No full text
    BackgroundInfections caused by third generation cephalosporin-resistant Enterobacteriaceae (3GCREB) are an increasing healthcare problem. We aim to describe the 3GCREB infection incidence and compare it to prevalence upon admission. In addition, we aim to describe infections caused by 3GCREB, which are also carbapenem resistant (CRE).MethodsIn 2014-2015, we performed prospective 3GCREB surveillance in clinically relevant patient specimens (screening specimens excluded). Infections counted as hospital-acquired (HAI) when the 3GCREB was detected after the third day following admission, otherwise as community-acquired infection (CAI).ResultsOf 578,420 hospitalized patients under surveillance, 3367 had a 3GCREB infection (0.58%). We observed a similar 3GCREB CAI and HAI incidence (0.28 and 0.31 per 100 patients, respectively). The most frequent pathogen was 3GCR E. coli, in CAI and HAI (0.15 and 0.12 per 100 patients). We observed a CRE CAI incidence of 0.006 and a HAI incidence of 0.008 per 100 patients (0.014 per 1000 patient days).ConclusionsComparing the known 3GCREB admission prevalence of the participating hospitals (9.5%) with the percentage of patients with a 3GCREB infection (0.58%), we conclude the prevalence of 3GCREB in university hospitals to be about 16 times higher than suggested when only patients with 3GCREB infections are considered. Moreover, we find the HAI and CAI incidence caused by CRE in Germany to be relatively low

    Severe Combined Immunodeficiencies

    No full text
    corecore