632 research outputs found

    A systematic review investigating fatigue, psychological and cognitive impairment following TIA and minor stroke:protocol paper

    Get PDF
    Approximately 20,000 people have a transient ischemic attack (TIA) and 23,375 have a minor stroke in England each year. Fatigue, psychological and cognitive impairments are well documented post-stroke. Evidence suggests that TIA and minor stroke patients also experience these impairments; however, they are not routinely offered relevant treatment. This systematic review aims to: (1) establish the prevalence of fatigue, anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive impairment following TIA and minor stroke and to investigate the temporal course of these impairments; (2) explore impact on quality of life (QoL), change in emotions and return to work; (3) identify where further research is required and to potentially inform an intervention study

    Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (Sr1x_{1-x}Cax_{x})RuO3_{3}

    Full text link
    Quantum phase transitions (QPTs) have been studied extensively in correlated electron systems. Characterization of magnetism at QPTs has, however, been limited by the volume-integrated feature of neutron and magnetization measurements and by pressure uncertainties in NMR studies using powderized specimens. Overcoming these limitations, we performed muon spin relaxation (μ\muSR) measurements which have a unique sensitivity to volume fractions of magnetically ordered and paramagnetic regions, and studied QPTs from itinerant heli/ferro magnet to paramagnet in MnSi (single-crystal; varying pressure) and (Sr1x_{1-x}Cax_{x})RuO3_{3} (ceramic specimens; varying xx). Our results provide the first clear evidence that both cases are associated with spontaneous phase separation and suppression of dynamic critical behavior, revealed a slow but dynamic character of the ``partial order'' diffuse spin correlations in MnSi above the critical pressure, and, combined with other known results in heavy-fermion and cuprate systems, suggest a possibility that a majority of QPTs involve first-order transitions and/or phase separation.Comment: 11 pages, 4 figures, 21 authors, to appear in Nature Physic

    Maf1, a New Player in the Regulation of Human RNA Polymerase III Transcription

    Get PDF
    BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the α-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Allelic imbalance at 1p36 may predict prognosis of chemoradiation therapy for bladder preservation in patients with invasive bladder cancer

    Get PDF
    Invasive bladder cancers have been treated by irradiation combined with cis- platinum (CDDP) as a bladder preservative option. The aim of this study was to find a marker for predicting patient outcome as well as clinical response after chemoradiation therapy (CRT) by investigating allelic loss of apoptosis-related genes. A total of 67 transitional cell carcinomas of the bladder treated by CRT (median dose: 32.4 Gy of radiation and 232 mg of CDDP) were studied. We investigated allelic imbalances at 14 loci on chromosomes 17p13 and 1p36 including the p53 and p73 gene regions by fluorescent multiplex PCR based on DNA from paraffin-embedded tumour specimens and peripheral blood. The response to CRT was clinical response (CR) in 21 patients (31%), partial response (PR) in 31 (46%), and no change(NC) in 15 (22%). There was no statistical correlation between treatment response and clinical parameters, such as tumour grade, stage, radiation dose, or CDDP dose. The frequencies of allelic imbalance for TP53 and TP73 were 21 and 56%, respectively; neither was correlated with clinical treatment response and tumour stage or grade. There was no statistical correlation between treatment response and allelic imbalance at the other 12 loci. We found a significant correlation between cancer-specific survival and an imbalance of D1S243 (P=0.0482) or TP73 (P=0.0013) using a Log-rank test, although other loci including TP53 did not correlate with survival (P=0.4529 Multivariate analysis showed performance status (P=0.0047), recurrence (P=0.0017), and radiation doses (P=0.0468) were independent predictive factors for cancer-specific survival. However, an allelic imbalance of TP73 was the most remarkable independent predictive factor of poor patient survival (P=0.0002, risk ratio: 3382). Our results suggest that the allelic loss of the p73 gene predicts a clinical outcome of locally advanced bladder cancer when treated by CRT

    Combination Therapy Is Superior to Sequential Monotherapy for the Initial Treatment of Hypertension:A Double-Blind Randomized Controlled Trial

    Get PDF
    Background: Guidelines for hypertension vary in their preference for initial combination therapy or initial monotherapy, stratified by patient profile; therefore, we compared the efficacy and tolerability of these approaches. Methods and Results: We performed a 1‐year, double‐blind, randomized controlled trial in 605 untreated patients aged 18 to 79 years with systolic blood pressure (BP) ≥150 mm Hg or diastolic BP ≥95 mm Hg. In phase 1 (weeks 0–16), patients were randomly assigned to initial monotherapy (losartan 50–100 mg or hydrochlorothiazide 12.5–25 mg crossing over at 8 weeks), or initial combination (losartan 50–100 mg plus hydrochlorothiazide 12.5–25 mg). In phase 2 (weeks 17–32), all patients received losartan 100 mg and hydrochlorothiazide 12.5 to 25 mg. In phase 3 (weeks 33–52), amlodipine with or without doxazosin could be added to achieve target BP. Hierarchical primary outcomes were the difference from baseline in home systolic BP, averaged over phases 1 and 2 and, if significant, at 32 weeks. Secondary outcomes included adverse events, and difference in home systolic BP responses between tertiles of plasma renin. Home systolic BP after initial monotherapy fell 4.9 mm Hg (range: 3.7–6.0 mm Hg) less over 32 weeks (P<0.001) than after initial combination but caught up at 32 weeks (difference 1.2 mm Hg [range: −0.4 to 2.8 mm Hg], P=0.13). In phase 1, home systolic BP response to each monotherapy differed substantially between renin tertiles, whereas response to combination therapy was uniform and at least 5 mm Hg more than to monotherapy. There were no differences in withdrawals due to adverse events. Conclusions: Initial combination therapy can be recommended for patients with BP >150/95 mm Hg. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifier: NCT00994617

    Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

    Get PDF
    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane

    Epistasis: Obstacle or Advantage for Mapping Complex Traits?

    Get PDF
    Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis, are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models, instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model selection is dramatic
    corecore