17 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Draft genome sequence of Marinobacterium rhizophilum CL-YJ9T (DSM 18822T), isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica.

    Get PDF
    The genus Marinobacterium belongs to the family Alteromonadaceae within the class Gammaproteobacteria and was reported in 1997. Currently the genus Marinobacterium contains 16 species. Marinobacterium rhizophilum CL-YJ9T was isolated from sediment associated with the roots of a plant growing in a tidal flat of Youngjong Island, Korea. The genome of the strain CL-YJ9T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: KMG project. Here we report the main features of the draft genome of the strain. The 5,364,574 bp long draft genome consists of 58 scaffolds with 4762 protein-coding and 91 RNA genes. Based on the genomic analyses, the strain seems to adapt to osmotic changes by intracellular production as well as extracellular uptake of compatible solutes, such as ectoine and betaine. In addition, the strain has a number of genes to defense against oxygen stresses such as reactive oxygen species and hypoxia
    corecore