413 research outputs found

    The Association of Alcohol and Alcohol Metabolizing Gene Variants with Diabetes and Coronary Heart Disease Risk Factors in a White Population

    Get PDF
    BACKGROUND: Epidemiological studies have shown a J- or U-shaped relation between alcohol and type 2 diabetes and coronary heart disease (CHD). The underlying mechanisms are not clear. The aim was to examine the association between alcohol intake and diabetes and intermediate CHD risk factors in relation to selected ADH and ALDH gene variants. METHODOLOGY/PRINCIPAL FINDINGS: Cross-sectional study including 6,405 Northern European men and women aged 30-60 years from the general population of Copenhagen, Denmark. Data were collected with self-administered questionnaires, a physical examination, a 2 hour oral glucose tolerance test, and various blood tests. J shaped associations were observed between alcohol and diabetes, metabolic syndrome (MS), systolic and diastolic blood pressure, triglyceride, total cholesterol, and total homocysteine. Positive associations were observed with insulin sensitivity and HDL cholesterol, and a negative association with insulin release. Only a few of the selected ADH and ALDH gene variants was observed to have an effect. The ADH1c (rs1693482) fast metabolizing CC genotype was associated with an increased risk of impaired glucose tolerance (IGT)/diabetes compared to the CT and TT genotypes. Significant interactions were observed between alcohol and ADH1b (rs1229984) with respect to LDL and between alcohol and ALDH2 (rs886205) with respect to IGT/diabetes. CONCLUSIONS/SIGNIFICANCE: The selected ADH and ALDH gene variants had only minor effects, and did not seem to markedly modify the health effects of alcohol drinking. The observed statistical significant associations would not be significant, if corrected for multiple testing

    Effectiveness of Liraglutide and Lixisenatide in the Treatment of Type 2 Diabetes: Real-World Evidence from The Health Improvement Network (THIN) Database in the United Kingdom.

    Get PDF
    INTRODUCTION: The glucagon-like peptide-1 receptor agonists liraglutide and lixisenatide are effective at reducing glycated hemoglobin (HbA1c) levels in patients with type 2 diabetes mellitus (T2DM). Although liraglutide has demonstrated superior efficacy in head-to-head clinical trials, real-world evidence of comparative effectiveness is lacking. This observational study aimed to assess the effectiveness of liraglutide versus lixisenatide in UK clinical practice. METHODS: Electronic medical records from The Health Improvement Network (THIN) UK primary care database were analyzed. Patients aged ≥18 years, diagnosed with T2DM, and prescribed liraglutide or lixisenatide between 01 May 2013 and 31 December 2015 were included in the study. Adjusted linear regression models compared the difference in mean change in HbA1c, body mass index (BMI), and systolic blood pressure (SBP) after 12-month follow-up. The proportion of patients achieving glycemic control (HbA1c 1%; and weight reduction ≥3% within 12 months were determined. Cox proportional hazards modeling was used to evaluate the effect of treatment on time to achieving HbA1c and weight reduction targets. Healthcare resource use (HCRU) (GP, secondary care, hospitalizations) was compared using analysis of covariance. RESULTS: The primary outcome was assessed in 579 liraglutide and 213 lixisenatide new users. Fully adjusted linear regression indicated that liraglutide reduced HbA1c significantly more than lixisenatide (mean treatment difference -0.30; 95% CI -0.56, -0.04; p = 0.025). Compared to lixisenatide, liraglutide recipients were 2.5 times more likely to achieve HbA1c 1% HbA1c reduction (HR 1.29; p = 0.0002). BMI and SBP reductions were greater for the liraglutide group but results were not significant. HCRU was comparable between treatment groups. CONCLUSION: These results from the THIN database indicate that liraglutide treatment provided better outcomes related to glycemic control. FUNDING: Novo Nordisk

    The prognosis for individuals on disability retirement An 18-year mortality follow-up study of 6887 men and women sampled from the general population

    Get PDF
    BACKGROUND: Several studies have shown a markedly higher mortality rate among disability pensioners than among non-retired. Since most disability pensions are granted because of non-fatal diseases the reason for the increased mortality therefore remains largely unknown. The aim of this study was to evaluate potential explanatory factors. METHODS: Data from five longitudinal cohort studies in Sweden, including 6,887 men and women less than 65 years old at baseline were linked to disability pension data, hospital admission data, and mortality data from 1971 until 2001. Mortality odds ratios were analyzed with Poisson regression and Cox's proportional hazards regression models. RESULTS: 1,683 (24.4%) subjects had a disability pension at baseline or received one during follow up. 525 (7.6%) subjects died during follow up. The subjects on disability pension had a higher mortality rate than the non-retired, the hazards ratio (HR) being 2.78 (95%CI 2.08–3.71) among women and 3.43 (95%CI 2.61–4.51) among men. HR was highest among individuals granted a disability pension at young ages (HR >7), and declined parallel to age at which the disability pension was granted. The higher mortality rate among the retired subjects was not explained by disability pension cause or underlying disease or differences in age, marital status, educational level, smoking habits or drug abuse. There was no significant association between reason for disability pension and cause of death. CONCLUSION: Subjects with a disability pension had increased mortality rates as compared with non-retired subjects, only modestly affected by adjustments for psycho-socio-economic factors, underlying disease, etcetera. It is unlikely that these factors were the causes of the unfavorable outcome. Other factors must be at work

    Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Get PDF
    The present study reports the discovery of a small-molecule negative allosteric modulator for the β2-adrenergic receptor (β2AR) via in vitro affinity-based iterative selection of highly diverse DNA-encoded small-molecule libraries. Characterization of the compound demonstrates its selectivity for the β2AR and that it negatively modulates a wide range of receptor functions. More importantly, our findings establish a generally applicable, proof-of-concept strategy for screening DNA-encoded small-molecule libraries against purified G-protein–coupled receptors (GPCRs), which holds great potential for discovering therapeutic molecules

    Proximal correlates of metabolic phenotypes during ‘at-risk' and ‘case' stages of the metabolic disease continuum

    Get PDF
    Extent: 11p.OBJECTIVE: To examine the social and behavioural correlates of metabolic phenotypes during ‘at-risk’ and ‘case’ stages of the metabolic disease continuum. DESIGN: Cross-sectional study of a random population sample. PARTICIPANTS: A total of 718 community-dwelling adults (57% female), aged 18--92 years from a regional South Australian city. MEASUREMENTS: Total body fat and lean mass and abdominal fat mass were assessed by dual energy x-ray absorptiometry. Fasting venous blood was collected in the morning for assessment of glycated haemoglobin, plasma glucose, serum triglycerides, cholesterol lipoproteins and insulin. Seated blood pressure (BP) was measured. Physical activity and smoking, alcohol and diet (96-item food frequency), sleep duration and frequency of sleep disordered breathing (SDB) symptoms, and family history of cardiometabolic disease, education, lifetime occupation and household income were assessed by questionnaire. Current medications were determined by clinical inventory. RESULTS: 36.5% were pharmacologically managed for a metabolic risk factor or had known diabetes (‘cases’), otherwise were classified as the ‘at-risk’ population. In both ‘at-risk’ and ‘cases’, four major metabolic phenotypes were identified using principal components analysis that explained over 77% of the metabolic variance between people: fat mass/insulinemia (FMI); BP; lipidaemia/lean mass (LLM) and glycaemia (GLY). The BP phenotype was uncorrelated with other phenotypes in ‘cases’, whereas all phenotypes were inter-correlated in the ‘at-risk’. Over and above other socioeconomic and behavioural factors, medications were the dominant correlates of all phenotypes in ‘cases’ and SDB symptom frequency was most strongly associated with FMI, LLM and GLY phenotypes in the ‘at-risk’. CONCLUSION: Previous research has shown FMI, LLM and GLY phenotypes to be most strongly predictive of diabetes development. Reducing SDB symptom frequency and optimising the duration of sleep may be important concomitant interventions to standard diabetes risk reduction interventions. Prospective studies are required to examine this hypothesis.MT Haren, G Misan, JF Grant, JD Buckley, PRC Howe, AW Taylor, J Newbury and RA McDermot

    Proximal correlates of metabolic phenotypes during ‘at-risk' and ‘case' stages of the metabolic disease continuum

    Get PDF
    Extent: 11p.OBJECTIVE: To examine the social and behavioural correlates of metabolic phenotypes during ‘at-risk’ and ‘case’ stages of the metabolic disease continuum. DESIGN: Cross-sectional study of a random population sample. PARTICIPANTS: A total of 718 community-dwelling adults (57% female), aged 18--92 years from a regional South Australian city. MEASUREMENTS: Total body fat and lean mass and abdominal fat mass were assessed by dual energy x-ray absorptiometry. Fasting venous blood was collected in the morning for assessment of glycated haemoglobin, plasma glucose, serum triglycerides, cholesterol lipoproteins and insulin. Seated blood pressure (BP) was measured. Physical activity and smoking, alcohol and diet (96-item food frequency), sleep duration and frequency of sleep disordered breathing (SDB) symptoms, and family history of cardiometabolic disease, education, lifetime occupation and household income were assessed by questionnaire. Current medications were determined by clinical inventory. RESULTS: 36.5% were pharmacologically managed for a metabolic risk factor or had known diabetes (‘cases’), otherwise were classified as the ‘at-risk’ population. In both ‘at-risk’ and ‘cases’, four major metabolic phenotypes were identified using principal components analysis that explained over 77% of the metabolic variance between people: fat mass/insulinemia (FMI); BP; lipidaemia/lean mass (LLM) and glycaemia (GLY). The BP phenotype was uncorrelated with other phenotypes in ‘cases’, whereas all phenotypes were inter-correlated in the ‘at-risk’. Over and above other socioeconomic and behavioural factors, medications were the dominant correlates of all phenotypes in ‘cases’ and SDB symptom frequency was most strongly associated with FMI, LLM and GLY phenotypes in the ‘at-risk’. CONCLUSION: Previous research has shown FMI, LLM and GLY phenotypes to be most strongly predictive of diabetes development. Reducing SDB symptom frequency and optimising the duration of sleep may be important concomitant interventions to standard diabetes risk reduction interventions. Prospective studies are required to examine this hypothesis.MT Haren, G Misan, JF Grant, JD Buckley, PRC Howe, AW Taylor, J Newbury and RA McDermot

    Gene-Gene and Gene-Environmental Interactions of Childhood Asthma: A Multifactor Dimension Reduction Approach

    Get PDF
    Background: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. Methodology/Principal Findings: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 singlenucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR) method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1), the gene coding interleukin-4 receptor alpha chain (IL4Ra) and the gene coding insulin induced gene 2 (INSIG2) on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83 % with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2), signal transducer and activator of transcription 6 (STAT6). We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance

    Resistant Starch: Promise for Improving Human Health

    Get PDF
    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized
    corecore