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Abstract209

Genetic association studies have identified 21 loci associated with atopic dermatitis risk210

predominantly in populations of European ancestry. To identify further susceptibility loci for this211

common complex skin disease, we performed a meta-analysis of >15 million genetic variants in212

21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino213

ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified214

10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel215

secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in216

regulation of innate host defenses and T-cell function, underscoring the important contribution of217

(auto-)immune mechanisms to atopic dermatitis pathogenesis.218

219

Atopic dermatitis (eczema) is a common inflammatory skin disease affecting 15–30% of children and220

5-10% of adults1. Its pathogenesis involves skin barrier abnormalities and a T-cell-driven cutaneous221

inflammation. Atopic dermatitis has significant genetic contributions, with heritability estimates of222

up to 90%2 in Europeans. The strongest known risk factors are null mutations of the filaggrin (FLG)223

gene, resulting in epidermal barrier deficiency3-5. Genome-wide association (GWA) studies have224

identified 20 additional loci (10 in Europeans, 8 in Japanese, 2 in Chinese populations), mostly225

implicated in immune dysregulation6-12. Genetic modeling suggests further loci may be identified with226

well-powered GWAS13. We therefore carried out a multi-ethnic meta-analysis of 26 studies comprising227

21,399 cases and 95,464 controls imputed to the 1000 Genomes Project Phase 1 reference panel228

(Supplementary Note 1 & Supplementary Table 1). 15,539,996 variants with ≥1% MAF were analyzed. 229

A fixed effects meta-analysis of the 22 European studies identified 21 genome-wide significant230

(p<5x10–8) loci (Table 1, Fig 1, Supplementary Figs 1-4), and a multi-ethnic meta-analysis identified231

an additional 6 loci with log10 Bayes Factor>6.1, 4 of which (10q21.2, 6p21.33, 11p13, 2p13.3) also232

showed nominal association in the European analysis (Table 1). These 27 loci included all 11 loci233

previously associated with atopic dermatitis in Europeans and 5 loci originally reported in Japanese.234

Three Japanese loci (6p21.33, 10q21.2, 2q12.1) were also strongly associated in the European235

analysis, whereas two (3q13.2, 11p15.4) may represent Japanese-specific signals (Supplementary236

Figs 1&2), with the European confidence interval ruling out all but very small effects (OR<1.03, Table237

1). Furthermore, a locus originally reported in a Chinese GWAS (20q13.33) showed association in238

Europeans. We identified 11 novel loci for atopic dermatitis. Four (11q24.3, 10p15.1, 8q21.13,239

2p25.1) were previously associated with self-reported allergy14, and another (8q21.13) with240

asthma15. Two novel variants (5p13.2 and 2p25.1) showed statistically significant evidence of241
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heterogeneity between European and non-European studies (Cochran’s Q p~0.01, Supplementary242

Table 2). Both showed little evidence for association in non-Europeans (particularly Japanese,243

Supplementary Fig.2). The CIs also overlapped for all variants when comparing pediatric (defined as244

onset by age 6) with any-age onset studies (Supplementary Fig.3). Within Europeans there was245

some evidence of heterogeneity in effect sizes between studies amongst known variants (e.g.246

11q13.5 I2=62.9%, p<0.0001; 11p13 I2=55.6%, p=0.0011) but little evidence amogst novel variants (I2247

range=0-40%, all p>0.02, Supplementary Fig.2). Nevertheless, studies with phenotype definition248

based on a dermatological exam tended to report larger effect sizes than studies using self-report249

(Supplementary Fig.4), which is to be expected, assuming a moderate degree of phenotypic250

misclassification in the latter. The inclusion of studies utilizing self-report is therefore likely to bias251

estimates of the effect size towards the null, and this should be borne in mind when interpreting the252

odds ratios from our study. Given the primary aim of GWA studies is the detection of novel loci, the253

increase in sample size achieved by including these studies is so large that any potential detrimental254

effect on statistical power is more than outweighed and the expected direction of bias means there255

is unlikely to be an issue of spurious findings (corroborated by Supplementary Fig.4).”256

Seven of the 21 established asthma loci15-20, 7 of the 10 allergic sensitization loci21, and 6 of 14 self-257

reported allergy loci14 showed association with atopic dermatitis (p<0.05), all with consistent258

directions of effect, supporting common atopic mechanisms in atopic dermatitis and allergy259

(Supplementary Table 3). However, several studies used here contribute to multiple GWASs, which260

may bias this overlap. Nevertheless, a substantial proportion of the loci associated with other atopic261

conditions appear not to be strongly associated with atopic dermatitis.262

Twenty-one of the 27 atopic dermatitis-associated loci have previously been implicated in other263

immune-mediated traits (Supplementary Table 4), most notably inflammatory bowel disease (IBD)264

and psoriasis. We therefore compared significant results from GWAS of IBD22, psoriasis23, ankylosing265

spondylitis24, multiple sclerosis25, rheumatoid arthritis26 and type 1 diabetes27with results from our266

present study of atopic dermatitis. Of 163 established IBD risk variants, 39 reached p<0.05 for atopic267

dermatitis (Supplementary Table 5, 8.1 expected, p=2.4x10–16), 35 with the same direction of effect268

(sign test p<0.0001), consistent with the observational association between the two diseases28-30. Of269

the 36 known psoriasis variants, 15 reached p<0.05 for atopic dermatitis (Supplementary Table 6, 1.8270

expected, p=6x10–11), 10 with the same direction of effect (sign test p=0.30). However, these271

conditions rarely clinically co-occur31 and the most strongly associated genetic variants show272

opposite directions of effect32. Therefore our results, suggesting a more complex genetic273

relationship, might warrant further investigation. SNPs robustly associated with other auto-immune274

diseases were also more likely to be nominally associated with atopic dermatitis than expected by275
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chance, but there was little evidence of any consistency in direction of effect (Supplementary Tables276

7–10). These findings did not appear to be affected by contamination by common controls across277

studies. Analyses performed excluding common cohorts, yielded similar results (data not shown).278

Conditional analysis showed evidence for secondary independent signals at 4 known atopic279

dermatitis loci (2q12.1, 4q27, 11p13, 5q31.1, Supplementary Table 11), one of which (5q31.1) has280

been previously reported9. In the epidermal differentiation complex (1q21.2–3, where FLG is281

located) the signals near MRPS21 (rs7512552) and IL6R (rs12730935 or the known functional282

mutation rs2228145) were independent from FLG, whereas the top signal near LCE3E (rs61813875)283

appears to be partially tagging the R501X FLG mutation (r2=0.49) and showed no significant residual284

association (P>0.05) after conditioning on the 4 most prevalent FLG mutations (Supplementary285

Tables 12&13).286

To identify additional variants of biological relevance not reaching genome-wide significance, we287

applied gene-set enrichment analysis using Meta-Analysis Gene-set Enrichment of variaNT288

Associations (MAGENTA)33 (Supplementary Table 14). A significant enrichment of 22 partially289

overlapping gene-sets (FDR<=0.01) related to innate immune signaling and T-cell polarization was290

observed (Supplementary Fig.5).291

For replication, we selected the lead SNPs from the 11 novel loci, 9 candidate SNPs from the292

MAGENTA analysis (with p<10–5 mapping to gene-sets with FDR<0.05), and 3 SNPs representing293

potentially novel secondary signals. These were investigated in 18 studies (32,059 cases and 228,628294

controls, Supplementary Table 1). Amongst the European studies, 11 of the 20 novel loci reached a295

Bonferroni-corrected threshold (α=0.0025) with 1-sided tests in a fixed effects analysis (Table 2). 296

However, one of these showed evidence of heterogeneity (10p15.1, p=0.041) and was not significant297

in a random effects analysis (p=0.019, Supplementary Table 15). Two of the gene-set selected SNPs298

reached genome-wide significance in the combined analysis (2q37.1, 12q15). A random effects299

analysis of all replication cohorts (European and other ethnicities) show broadly consistent results300

(though only 6 reach genome-wide significance), with no clear population-specific effects301

(Supplementary Table 16 & Fig.6).302

All 3 secondary signals showed significant association in the replication-phase conditional analysis303

(Supplementary Table 11).304

As a preliminary step towards understanding the functional underpinnings of the atopic dermatitis305

genetic associations, we established a ‘credible set’ of SNPs (all with strong association) for each306

locus as described in the online methods34. We reviewed these SNPs’ functional annotations in307
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ENCODE Consortium and Roadmap Epigenomics Consortium data, evaluated expression quantitative308

trait locus (eQTL) effects in MuTHER35, reviewed evidence of differential expression, and surveyed309

relevant mouse mutants (see Supplementary Note 2 and Tables 17–21). Regions of DNase310

hypersensitivity from the ENCODE and Roadmap data36,37 were strongly enriched for atopic311

dermatitis association compared to the rest of the genome (Supplementary Fig.7 & Table 22),312

particularly in immune cells (Th0, Th1, Th17 p<0.0001), this enrichment was observed well below the313

genome-wide significance threshold, indicating the presence of additional undetected risk variants.314

We observed multiple cis-eQTLs (Bonferroni-corrected p<7x10–4) in lymphoblastoid cell lines (LCLs)315

or skin (Supplementary Tables 17&19). The most significant were two variants from the credible set316

at 2p13.3, which were strong eQTLs for CD207/langerin in skin (rs4852714 p=1.23x10–10, rs6723629317

p=1.67x10–10, LD with lead SNP r2=0.56,D’=0.96, and r2=0.53,D’=0.93, respectively, 99% posterior318

probability that atopic dermatitis and eQTL signals colocalize). rs4852714 is also in an open-319

chromatin region with histone marks indicative of promoter/enhancer activity in LCLs320

(Supplementary Tables 18,19 & Fig.8). CD207 encodes an intracellular pattern recognition receptor321

expressed in subpopulations of dendritic cells, in particular epidermal Langerhans cells (LCs) which322

play a vital role in the induction of tolerance and direction of adaptive immune responses38. CD207323

binds to carbohydrates present e.g. on microorganisms and exerts anti-viral/anti-fungal defense324

mechanisms39. Of note, atopic dermatitis is characterized by an increased susceptibility towards skin325

infection with pathogens such as Staphylococcus aureus, herpes simplex virus, and Malassezia326

species40, and differences in langerin function might contribute to this dysregulated cutaneous327

immunity.328

There is longstanding evidence that skin barrier defects and inappropriate immune responses to329

environmental antigens1 contributes to atopic dermatitis. However, evidence for autoimmune330

mechanisms, in particular in the context of progression to the chronic phase, has only recently331

emerged41. Interestingly, the majority of our novel susceptibility loci harbor candidate genes with332

functional annotations related to autoimmunity. At 14q13.2, the lead SNP (rs2038255) is intronic to333

PPP2R3C (a protein phosphatase component regulating B-cell maturation and survival), the334

dysregulation of which has been associated with murine autoimmunity42 and the signal colocalizes335

with a strong KIAA0391 eQTL signal (Supplementary Table 19). The lead 5p13.2 variant (rs10214237)336

is located 4kb downstream of the gene encoding the alpha-chain of the IL7 receptor (IL7R), which is337

a key mediator in T-cell-driven autoimmunity and inflammation43. Of interest, the credible set338

contains an IL7R missense variant (rs6897932, p=1.6x10–7, r2=0.94 with lead SNP), which displays the339

same effect direction with multiple sclerosis44,45. The risk allele leads to an enhanced bioavailability340

of IL746, which in mice causes severe dermatitis with intense pruritus and high IgE levels, i.e. atopic341
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dermatitis-like features47. Likewise, as part of the autosomal-dominant hyper-IgE syndrome, rare342

dominant negative mutations in the gene encoding STAT3 (in which our lead 17q21.2 variant is343

intronic) cause severe dermatitis and high serum IgE levels, as well as recurrent S.aureus skin344

infections, which may be driven by impaired Th17 cell differentiation and effector function48,49.345

STAT3 might thus represent an example for risk gene/pathway shared between a complex trait and a346

related Mendelian condition50,51, harboring highly penetrant severe effect rare mutations and347

common milder effect variants. At 8q21.13, the closest candidate gene is ZBTB10 encoding a zinc348

finger protein, which is a putative repressor of the Sp1, Sp3 and Sp4 transcription factors52. Variants349

in moderate LD (r2>0.7) with the lead variant for atopic dermatitis were previously associated with350

self-reported allergy14 and a combined asthma and hay fever phenotype53. However, although not351

excluding ZBTB10 as the causal gene, the credible SNP set comprises a 47kb interval on the other352

side of a recombination peak (60cM/Mb). The variant most likely to be regulatory amongst this set,353

deletion rs5892724 (r2=0.82 with lead SNP), is located in open chromatin in several cell types354

including CD4+ helper T-cells, and affects a STAT3 binding site49,54. At 11q24.3 the most plausible355

candidate gene is ETS1, which encodes a transcription factor with a range of immune functions356

including Th17 and B-cell differentiation and function; ETS1-deficient mice display autoimmune357

features55. ETS1 appears to be additionally involved in keratinocyte differentiation and formation of358

the cornified envelope56. Additional variants identified through the gene-set approach implicate359

genes with cytokine signaling functions (INPP5D, TRAF3, SOCS3 and a cytokine cluster on 12q15).360

In conclusion, we have identified 10 new loci robustly associated with atopic dermatitis in Europeans361

(6 of which also reach genome-wide significance in random effects analysis across studies of all362

ethnicities), bringing the total number of susceptibility loci to 31 (24 in Europeans), with evidence of363

secondary signals at 4 of these. Altogether, in the subset of European studies with clinically defined364

cases, previously established and newly identified variants explain approximately 12.3% and 2.6% of365

the variance in liability, respectively (Supplementary Table 23). All novel susceptibility loci are366

related to (auto-)immune regulation, in particular innate signaling and T-cell activation and367

specification, and there appears to be a substantial genetic overlap with other inflammatory and368

autoimmune diseases. Whilst not detracting from the importance of maintaining the skin barrier in369

the prevention and treatment of atopic dermatitis, our findings lend support to new therapeutic370

approaches targeted at immune modulation57.371
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551

Figure 1. Atopic dermatitis GWAS meta-analysis results. (A) Manhattan plot of European fixed552
effects meta-analysis. (B) Manhattan plot of the multi-ethnic MANTRA meta-analysis of all studies.553
Arrows mark variants not associated in the European-only analysis. (C) QQ plot of the European554
analysis - lambda=1.054.555
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Table 1. Discovery Results. The index variant for loci with p<5x10–8 in the European analysis or log10BF>6.1 in the multi-ethnic MANTRA analysis.
Previous atopy trait associations with these loci are listed.

European – fixed effects All cohorts – MANTRA Known atopy loci?

Variant Locus Nearest Gene‡ EA/OA N (studies) EAF OR (95% CI) P-value N (studies) log10 BF trait references

KNOWN LOCI

rs61813875 1q21.3 CRCT1/LCE3E (FLG)§ G/C 93,326 (18) 0.02 1.61 (1.48–1.75) 5.6x10–29 96,419 (20) 25.53 AD 3,4,5

rs10791824 11q13.1 OVOL1 G/A 102,761 (21) 0.57 1.12 (1.09–1.15) 2.1x10–19 116,556 (25) 21.56 AD 9

rs12188917 5q31.1 RAD50/IL13 C/T 102,761 (21) 0.21 1.14 (1.10–1.17) 4.0x10–17 116,554 (25) 17.24 AD,A,IgE 9,18,58

rs6419573 2q12.1 IL18R1/IL18RAP T/C 102,760 (21) 0.26 1.11 (1.08–1.14) 1.5x10–13 116,557 (25) 18.10 AD,A,AS,SRA 8,14,18,21

rs2212434 11q13.5 C11orf30/LRRC32 T/C 102,761 (21) 0.45 1.09 (1.07–1.12) 4.6x10–13 116,557 (25) 13.02 AD,AS,SRA,AR,A 11,14,15,21,59

rs4809219 20q13.33 RTEL1–TNFRSF6B C/A 102,760 (21) 0.27 0.90 (0.87–0.93) 7.0x10–13 116,555 (25) 11.98 AD 7,10

rs2918307 19p13.2 ADAMTS10/ACTL9 G/A 100,707 (20) 0.16 1.12 (1.08–1.16) 4.6x10–12 114,504 (24) 12.98 AD 9

rs2041733 16p13.13 CLEC16A C/T 103,066 (22) 0.55 0.92 (0.90–0.94) 2.5x10–11 116,862 (26) 10.11 AD,A+HF 7,53

rs12730935* 1q21.3 IL6R A/G 102,760 (21) 0.39 1.08 (1.05–1.11) 6.1x10–11 116,556 (25) 7.15 AD,A 12,15

4:123243592† 4q27 KIAA109 (IL2)§ R/I 102,761 (21) 0.37 1.08 (1.05–1.10) 4.2x10–9 107,119 (24) 7.32 AD,AS,SRA 7,14,21

rs4713555 6p21.32 HLA-DRB1/HLA-DQA1 T/G 91,217 (15) 0.27 0.91 (0.89–0.94) 5.4x10–9 105,014 (19) 10.76 AD,AS,SRA,A 6,8,14,18,21

rs2944542 10q21.2 ZNF365 C/G 102,762 (21) 0.41 0.94 (0.92–0.96) 1.2x10–6 116,559 (25) 7.56 AD 8,10

rs145809981 6p21.33 MICB T/C 97,697 (19) 0.14 0.91 (0.88–0.95) 1.5x10–6 110,228 (22) 7.33 AD,AS,SRA 8,14,21

rs4312054 11p15.4 OR10A3/NLRP10 G/T 102,760 (21) 0.41 1.00 (0.97–1.02) 0.744 116,556 (25) 7.00 AD 8

rs1249910 3q13.2 CCDC80/CD200R1L A/G 99,164 (20) 0.34 0.98 (0.96–1.01) 0.137 112,960 (24) 6.86 AD 8

rs2592555 11p13 PRR5L C/T 102,760 (21) 0.27 0.93 (0.90–0.96) 8.7x10–7 116,551 (25) 6.78 AD 7

NOVEL LOCI

rs2038255 14q13.2 PPP2R3C T/C 102,760 (21) 0.18 1.11 (1.07–1.14) 1.8x10–10 116,557 (25) 8.40

rs7127307 11q24.3 –/ETS1 C/T 103,066 (22) 0.47 0.93 (0.90–0.95) 3.9x10–10 116,855 (26) 9.08 SRA 14

rs7512552 1q21.2 C1orf51/MRPS21 T/C 102,762 (21) 0.49 0.93 (0.91–0.95) 9.1x10–10 116,544 (25) 6.91

rs6473227 8q21.13 MIR5708/ZBTB10 A/C 102,761 (21) 0.61 0.93 (0.91–0.95) 1.4x10–9 116,557 (25) 7.54 (AD),SRA,A+HF 9,14,53

rs6602364 10p15.1 IL15RA/IL2RA G/C 103,065 (22) 0.45 1.08 (1.05–1.10) 1.5x10–9 116,855 (26) 7.86 (SRA) 14

rs10214237 5p13.2 IL7R/CAPSL C/T 102,761 (21) 0.27 0.93 (0.90–0.95) 2.9x10–8 116,554 (25) 4.79

rs10199605 2p25.1 LINC00299/– A/G 102,760 (21) 0.30 0.93 (0.90–0.95) 3.4x10–8 116,557 (25) 4.67 (SRA) 14

rs4643526 2p16.1 PUS10 A/G 103,066 (22) 0.19 1.09 (1.06–1.12) 3.5x10–8 107,425 (25) 6.31

rs12951971 17q21.2 STAT3 G/T 102,761 (21) 0.09 1.13 (1.08–1.17) 4.1x10–8 107,120 (24) 5.33

rs7625909 3p21.1 SFMBT1/RFT1 T/C 102,761 (21) 0.32 1.07 (1.05–1.10) 4.9x10–8 116,558 (25) 5.83

rs112111458 2p13.3 CD207/VAX2 G/A 102,760 (21) 0.13 0.91 (0.87–0.94) 1.4x10–7 116,553 (25) 6.57
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*in LD with known functional mutation rs2228145 (r2=0.86)

†nearby SNP (rs6827756, bp posi� on: 123184411) in LD (r2=0.97 in 1000genomes) showed similar association, log10BF=7.21, European fixed effects p-value 3x10–9

‡Nearest genes are the two flanking genes if intergenic (with the closer gene in bold, - indicates no gene within 250kb), single genes denote the variant is intronic.
§ at 1q21.2: variant is closest to LCE3A, but previously associated FLG is within 250kb, at 4q27: variant is within an intron of KIAA109, but previously associated IL2 is within 150kb,

AD= atopic dermatitis, A=asthma, AS=allergic sensitization, SRA=self-reported allergy, AR=allergic rhinitis, A+HF=asthma and hayfever combined,
P-values and -log 10 Bayes Factors (BF) in bold indicate genome-wide significant results
EA/OA= effect allele/other allele, EAF = effect allele frequency, OR=odds ratio, CI=confidence interval, N= sample size, BF= bayes factor
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Table 2. Replication results for the novel genome-wide significant loci and loci identified in the MAGENTA gene-set enrichment analysis.
Discovery, replication and combined results are shown.

Discovery European Replication European Overall European - fixed effects het random effects p-values

Variant Locus Nearest Gene EA/OA EAF N (studies) OR (95% CI) P-value N (studies) OR (95% CI) P-value‡ N OR (95% CI) P-value p-value European all studies

NOVEL GENOMEWIDE SIGNIFICANT LOCI

rs7512552 1q21.2 C1orf51/MRPS21 T/C 0.49 102762 (21) 0.93(0.91–0.95) 9.1x10–10 257019 (15) 0.98(0.96–0.99) 0.0048 359781 0.96(0.94–0.97) 5.41x10–9 0.002 1.5x10–7 1.3x10–7

rs10199605 2p25.1 LINC00299/– A/G 0.30 102760 (21) 0.93(0.90–0.95) 3.4x10–8 256958 (15) 0.97(0.95–0.99) 0.0045 359718 0.96(0.94–0.97) 3.97x10–8 0.024 4.1x10–6 1.5x10–5

rs4643526 2p16.1 PUS10 A/G 0.19 103066 (22) 1.09(1.06–1.12) 3.5x10–8 257050 (14) 1.03(1.01–1.05) 0.0058 360116 1.05(1.03–1.07) 5.94x10–8 0.249 3.8x10–6 1.1x10–5

rs112111458 2p13.3 CD207/VAX2 G/A 0.13 102760 (21) 0.91(0.87–0.94) 1.4x10–7 257019 (15) 0.95(0.93–0.98) 7.95x10–4 359779 0.94(0.92–0.96) 9.38x10–9 0.076 4.4x10–6 1.6x10–7

rs11923593* 3p21.1 SFMBT1/RFT1 G/A 0.32 102761 (21) 1.07(1.04–1.10) 9.7x10–8 257002 (15) 1.01(0.99–1.03) 0.2600 359763 1.03(1.01–1.05) 1.30x10–4 0.081 8.7x10–5 1.7x10–5

rs10214237 5p13.2 IL7R/CAPSL C/T 0.27 102761 (21) 0.93(0.90–0.95) 2.9x10–8 257010 (15) 0.94(0.93–0.96) 6.71x10–8 359771 0.94(0.92–0.95) 2.86x10–14 0.773 2.9x10–14 1.5x10–10

rs6473227 8q21.13 MIR5708/ZBTB10 A/C 0.61 102761 (21) 0.93(0.91–0.95) 1.4x10–9 257006 (15) 0.95(0.93–0.97) 4.53x10–9 359767 0.94(0.93–0.95) 2.22x10–16 0.622 2.2x10–16 5.3x10–18

rs6602364 10p15.1 IL15RA/IL2RA G/C 0.45 103065 (22) 1.08(1.05–1.10) 1.5x10–9 256993 (15) 1.03(1.01–1.05) 3.91x10–4 360058 1.05(1.03–1.06) 1.33x10–10 0.041 3.6x10–6 1.6x10–6

rs7127307 11q24.3 –/ETS1 C/T 0.47 103066 (22) 0.93(0.90–0.95) 3.9x10–9 257034 (15) 0.94(0.93–0.96) 2.51x10–10 360100 0.94(0.92–0.95) 1.48x10–18 0.935 1.5x10–18 1.0x10–20

rs2143950* 14q13.2 PPP2R3C T/C 0.17 102762 (21) 1.10(1.07–1.14) 6.8x10–10 249940 (12) 1.07(1.04–1.09) 9.92x10–8 352702 1.08(1.06–1.10) 1.78x10–15 0.092 4.8x10–7 8.6x10–10

rs17881320* 17q21.2 STAT3 T/G 0.08 96796 (19) 1.12(1.07–1.17) 2.0x10–6 249949 (12) 1.05(1.02–1.09) 1.47x10–3 346745 1.08(1.05–1.11) 1.41x10–7 0.405 6.2x10–7 2.6x10–6

MAGENTA GENE-SET ENRICHMENT ANALYSIS LOCI

rs1057258 2q37.1 INPP5D T/C 0.18 101012 (21) 0.94(0.91–0.97) 6.57x10–5 257030 (15) 0.94(0.92–0.96) 3.79x10–7 358042 0.94(0.92–0.96) 1.72x10–10 0.811 1.7x10–10 4.1x10–13

rs6872156 5q35.1 DUSP1 A/G 0.24 103066 (22) 0.93(0.91–0.96) 2.35x10–6 257047 (15) 0.97(0.95–0.99) 0.0055 360113 0.96(0.94–0.97) 8.08x10–7 0.340 1.8x10–6 2.7x10–7

rs7016497 8q24.3 PTK2 T/C 0.21 103066 (22) 0.94(0.91–0.97) 1.09x10–4 257040 (15) 0.98(0.95–1.00) 0.0290 360106 0.96(0.95–0.98) 9.37x10–5 0.757 9.4x10–5 1.4x10–6

rs2905493 11q12.2 CD6/CD5 T/C 0.01 89617 (15) 0.78(0.68–0.89) 2.63x10–4 254992 (13) 1.01(0.94–1.08) 0.6040 344609 0.95(0.90–1.02) 0.1432 0.150 0.419 0.098

rs1799986 12q13.3 LRP1(STAT6)† T/C 0.15 99165 (20) 0.91(0.88–0.94) 1.14x10–7 257022 (15) 0.98(0.96–1.01) 0.1140 356187 0.96(0.94–0.98) 2.90x10–5 0.182 1.1x10–4 1.6x10–3

rs2227483 12q15 IL22(& IFNG)† A/T 0.44 102762 (21) 0.94(0.92–0.97) 2.27x10–6 253446 (14) 0.94(0.92–0.96) 3.55x10–11 356208 0.94(0.93–0.96) 6.66x10–16 0.664 6.7x10–16 1.2x10–17

rs7146581 14q32.32 TRAF3 T/C 0.24 102760 (21) 0.95(0.92–0.97) 1.44x10–4 256971 (15) 0.96(0.94–0.98) 5.67x10–5 359731 0.95(0.94–0.97) 6.17x10–8 0.219 1.2x10–4 4.1x10–6

rs11657987 17q25.3 PGS1(SOCS3)† T/G 0.49 100695 (21) 1.06(1.04–1.09) 1.07x10–6 257019 (15) 1.03(1.01–1.05) 1.04x10–3 357714 1.04(1.03–1.06) 5.09x10–8 0.235 9.7x10–5 6.0x10–5

rs77714197 19q13.11 CEBPA T/C 0.02 87690 (14) 1.35(1.19–1.54) 3.31x10–6 256447 (14) 0.98(0.89–1.08) 0.6540 344137 1.10(1.02–1.18) 0.0139 0.048 0.102 0.116

*rs11923593 replaces rs7625909 (r2=0.98), rs2143950 replaces rs2038255 (r2=0.94), rs17881320 replaces rs12951971 (r2=0.75) in the replication analysis
†rs1799986 is within LRP1, but was selected in the MAGENTA analysis due to its proximity to STAT6. rs2227483 is with IL22, but was selected due to its proximity to both IL22 and IFNG.

rs11657987 is within PGS1, but was selected due to its proximity to SOCS3

‡ Replication p-values for a 1-sided test

Replication p-values in bold were considered significant (p<0.0025), overall p-values in bold are genome-wide significant, heterogeneity p-values<0.05 are in bold
EA/OA= effect allele/other allele, EAF = effect allele frequency, OR=odds ratio, CI=confidence interval, N= sample size, het=heterogeneity
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ONLINE METHODS

GWAS meta-analysis

We carried out genome-wide association (GWA) analysis for atopic dermatitis case/control status in

26 individual studies (Supplementary Table 1), comprising a total of 21,399 cases and 95,464

controls. The majority of these studies included individuals of only European ancestry (22 studies,

18,900 cases, 84,166 controls). We also included one study of Japanese individuals (RIKEN, 1,472

cases. 7,966 controls), one study of African American individuals (SAPPHIRE, 422 cases and 844

controls), one study of Latin American individuals (GALA II, 300 cases, 1,592 controls) and one study

with individuals of mixed non-European ancestry (Generation R, 305 cases, 896 controls).

Each cohort separately imputed their genetic data to 1000 Genomes Project Phase 1 (the majority to

the March 2012 release, Supplementary Table 1) and carried out GWA analysis across all imputed

variants. Before meta-analysis we restricted each study to only those variants with minor allele

frequency (MAF)>1% and moderate imputation quality score (Rsq>0.3 for variants imputed in MACH

and proper info>0.4 for IMPUTE). For some cohorts additional quality control filters were applied

(full methods for each study are available in Supplementary Note 1).

Meta-analysis was conducted for Europeans only in GWAMA (using fixed effects) and for all

ethnicities combined in MANTRA60. Rather than imposing a fixed or random effects model, MANTRA

accounts for the heterogeneity of effects between ethnicities by allowing the studies to cluster

according to allele frequency profile (and hence population genetic similarity). To prevent very small

European studies (with less precise estimates of the allele frequencies) from having undue weight in

our analysis we fixed the Europeans to cluster together by using the European fixed effects results in

the MANTRA analysis. Variants with p<5x10–8 in the European analysis were considered to be

associated, as were any additional variants with (log10) Bayes Factor (BF)>6.1 (equivalent to p<5x10–

8)61 in the MANTRA analysis. Each locus is represented in the results table by the variant with the

strongest evidence for association. Heterogeneity was assessed using the I2 statistic and Cochrane’s

Q test. Meta-analysis results were also stratified according to ethnicity, method of case diagnosis

and age of onset to explore sources of heterogeneity.

For the Epidermal-differentiation complex region (where the FLG gene is located and which has

previously shown complex association results), we repeated the association tests (across the region

between 150.2–154.5Mb on chromosome 1) conditioning on the four most common FLG variants

(R501X, 2282del4, R2447X, S3247X) in the individual studies where these were available (10 studies,
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20,384 individuals, Supplementary Table 12). These were meta-analyzed to identify whether there

were any remaining independent association signals in this region.

Identification of independent secondary signals at associated loci

To identify secondary independent signals at each of the other associated loci, we carried out

conditional analysis of the European meta-analysis results using GCTA62, with the ALSPAC 1000

Genomes imputation (restricted to variants with MAF>1% and imputation quality proper info

score>0.8) serving as the reference. The regions tested were +/-250kb surrounding the top hit at

each locus. Locus specific significance thresholds were estimated by first calculating the effective

number of tests in each 500kb region using Nyholt’s procedure63 and the 1000 Genomes reference

data (European). For each locus we estimated the new threshold for locus-wide error rate of 5% by

dividing alpha (0.05) by the corresponding number of effective tests in that region (α-values are 

shown in Supplementary Table 11). For 4q27 we defined the region as +/-500kb as a known hit was

just less than 500kb from the top SNP in our analysis. We conditioned each region on the top hit

from our meta-analysis. Any variant that surpassed the locus-specific threshold was considered an

independent secondary signal.

MAGENTA gene-set enrichment analysis

We tested our meta-analysis results for enriched gene-sets using MAGENTA33. This method assigns

SNPs to genes based on genomic distance (SNPs are assigned if within 110kb upstream or 40kb

downstream of each gene), and generates gene-based summary p-values. Subsequently, genes are

assigned to gene-sets (using curated repositories including GO-data, Biocarta, PANTHER, KEGG, etc.)

and each gene-set is assigned a p-value by comparing gene summary p-values to a null model where

SNPs are drawn randomly 10,000 times (normalizing for the number of SNPs genotyped in each

gene) and controlling for false discovery rate (FDR) at α=0.05. ~10,000 gene-sets were tested. As 

MAGENTA requires a p-value as input and to take account of the differing effects between

populations, we re-analyzed our meta-analysis of all studies using a random effects model, to serve

as input to the MAGENTA analysis. All genes in the HLA region (chr6:29710331–33150000) were

removed from the analysis. In order to identify additional variants of interest to take forward to

replication we examined any pathway with FDR<0.05. From these gene-sets we took forward to

replication any additional loci with a genetic variant p<10–5.

Cross-phenotype comparisons

The NHGRI GWAS catalog64 was mined for traits with reported associations at each of our genome-

wide significant loci. To further investigate the genetic overlap between atopic dermatitis and auto-
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immune diseases, we took the genome-wide significant loci from recent GWAS of IBD22 and

psoriasis23 ankylosing spondylitis24, multiple sclerosis25, rheumatoid arthritis26 and type 1 diabetes27

and extracted the atopic dermatitis results for these variants from our European discovery GWAS,

noting whether the variant was associated (p<0.05) with atopic dermatitis (testing enrichment of

overlap using the 2-sided binomial exact test) and carried the same or opposite direction of effect

between the two traits (tested using the sign test).

Replication

The top SNP from the 11 novel associated regions (log10BF>6.1 or p<5x10–8) were taken forward to

replication, along with 9 suggestively associated SNPs (p<10–5) that were in genes highlighted in the

MAGENTA analysis as good candidates. In addition, we included any variants with evidence for being

secondary independent signals at associated loci. Replication consisted of 18 studies (32,059 cases

and 228,628 controls) with genome-wide imputed data available or custom genotyping

(Supplementary Table 1). Studies of European ethnicity were combined in fixed effects meta-

analyses in GWAMA. We also carried out random effects meta-analysis for the European studies to

assess association for variants which showed evidence of heterogeneity (p<0.05). Significant

association in the replication phase was determined by 1-sided p-values meeting a Bonferroni-

corrected threshold (α=0.05/20=0.0025). Random effects meta-analyses of replication studies of all 

ethnicities were also carried out and forest plots examined for evidence of population-specific

effects. For the replication of the three secondary signals, the secondary SNPs were tested for

association after conditioning on the top SNP in each of the European cohorts. These results were

then combined in fixed effects meta-analyses.

Credible sets

In order to assemble a sensible list of variants at each locus for functional look-ups, we constructed

credible sets34 that represent those SNPs most likely to be causal based on statistical evidence from

the MANTRA analysis (or from the European analysis for the three variants that appeared to be

European-specific). The European-only GWAS was repeated in MANTRA to generate BFs required for

the credible set analysis. Bayes factors were used to calculate posterior probabilities for all SNPs in

each region (+/-1Mb), the minimum set of SNPs that had a cumulative posterior probability of at

least 95% made up each credible set. These sets can be interpreted similar to confidence intervals, in

that assuming the association signal at a locus can be attributed to a single causal variant (and that

the true causal variant is included in the analysis and has been well-imputed), the 95% credible set

contains that causal variant with 95% probability. Given that a 1000 Genomes imputation analysis

may not include the true causal variant or that the associations may be driven by more than one
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causal variant, we do not expect these credible sets to necessarily contain the causal variants at the

suggested 95% probability. Nevertheless, they demonstrate in addition to the ‘top SNP’, which

neighbouring variants also show strong association with atopic dermatitis and we find them useful in

assessing the size of the regions of interest and for defining a set of variants to follow-up. As the

posterior probabilities for the MAGENTA identified credible sets are extremely large (due to the

weaker signals at these loci), we instead carried out functional look-ups for all variants with r2>=0.8

of the top hit for these loci.

Functional look-ups

For variants identified as part of a credible set, we carried out look-ups in the following functional

data resources; (i) regulomeDB and Haploreg were mined for evidence of coding or regulatory

function (these resources collate annotations [e.g., coding variation, regulatory chromatin marks,

DNase I hypersensitivity, protein binding and motif alteration] from the ENCODE Consortium, the

NIH Roadmap Epigenomics Mapping Consortium, and the literature over a wide range of tissues); (ii)

cis-eQTL for skin or LCLs were identified from the MuTHER consortium35 (with variants considered

eQTLs if association with any transcript within 1Mb was p<7x10–4, corresponding to a bonferroni

correction for 36 loci and 2 tissues); (iii) differential expression reported for implicated genes

between uninvolved skin from cases and skin from controls65 and between lesional and non-lesional

skin in atopic dermatitis patients in a study deposited in the Gene Expression Omnibus

(Accession=GDS4444)66; and (iv) mouse mutants of implicated genes were examined in the MGI

database.

Colocalization of atopic dermatitis GWAS signals and eQTLs in the MuTHER data was investigated

using the R package coloc67. All SNPs within 100kb of the lead atopic dermatitis SNP were included in

the analysis and we report the posterior probabilities that the two signals colocalize in

Supplementary Table 19.

To identify and visualize cell types implicated in atopic dermatitis pathogenesis, the tendency of

disease associated loci to fall in cell-type specific regulatory DNase Hypersensitive Sites (DHS) (a

proxy for accessible and/or regulatory DNA) was calculated for the full range of p-values, essentially

as done by Maurano et al.68. This enrichment was computed for 168 cell types and cell lines in the

ENCODE Roadmap repository36. Duplicates and directly redundant cell types were removed before

analysis. One-sided p-values for enrichment were calculated from an empirical null distribution of

loci overlap for DHS-regions, generated by 10,000 random permutations of overlapping an identical

number of random loci as found at p<=1x10–10 with all DHS-regions for all cell- and tissue types.
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Variance in liability explained

We estimated the proportion of variance in atopic dermatitis liability explained by the established

and novel variants in a subset of studies that had clinically diagnosed cases

(GENEVA/KORAF4/POPGEN, NCRC-ADC, GENUFADex-SHIP1, GENUFAD-SHIP2, GENEVA(replication),

CECCS) using the method of So et al. (2011)69.

Data access.

Genome-wide results are available on request to the corresponding author, on condition of signing

any Data Transfer Agreements required according the IRB-approved protocols of contributing

studies.

Methods-only URLs

Gene Expression Omnibus www.ncbi.nlm.nih.gov/geoprofiles

MGI database www.informatics.jax.org
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