205 research outputs found

    Single positive pion electroproduction in the first and second resonance regions using CLAS

    Get PDF
    The study of single pion electroproduction can provide valuable information on the structure of the nucleon and its excited states. Although these reactions have been studied for decades, never has the npi + channel been measured over the complete phase space of the reaction. The CEBAF Large Acceptance Spectrometer (CLAS) located in Hall B of Jefferson Lab is well-suited for conducting these measurements. The CLAS data were taken using a 1.515 GeV electron beam incident on a liquid H 2 target. The cross sections have been extracted, and their &phis;-dependence has been fit to obtain the sigmaTT, sigma TL and the sigmaT + epsilonsigma L linear combination of the structure functions. An analysis program based on the Mainz unitary isobar model was used to analyze the experimental data from the pi+ channel only. The resonant amplitudes for P33(1232), S11(1535) and D13(1520) were obtained from the fit

    DVCS with a Longitudinally Polarized Target with CLAS12

    Get PDF
    We describe a planned experiment to measure the longitudinal target‐spin asymmetry in the DVCS process using CLAS12 detector. While the beam‐spin asymmetry is more sensitive to H GPD, measurements of the target‐spin asymmetry allow us to access the H̃ GPD. These data will extend the Q2 range accessable by the existing CLAS data and the scheduled 6 GeV CLAS DVCS experiments to Q2 = 8 GeV2

    Overdispersed Spatial Patterning of Dominant Bunchgrasses in Southeastern Pine Savannas

    Get PDF
    Spatial patterning is a key natural history attribute of sessile organisms that frequently emerges from and dictates potential for interactions among organisms. We tested whether bunchgrasses, the dominant plant functional group in longleaf pine savanna groundcover communities, are nonrandomly patterned by characterizing the spatial dispersion of three bunchgrass species across six sites in Louisiana and Florida. We mapped bunchgrass tussocks of \u3e5.0 cm basal diameter in three [Formula: see text] plots at each site. We modeled tussocks as two-dimensional objects to analyze their spatial relationships while preserving sizes and shapes of individual tussocks. Tussocks were overdispersed (more regularly spaced than random) for all species and sites at the local interaction scale (\u3c0.3 m). This general pattern likely arises from a tussock-centered, distance-dependent mechanism, for example, intertussock competition. Nonrandom spatial patterns of dominant species have implications for community assembly and ecosystem function in tussock-dominated grasslands and savannas, including those characterized by extreme biodiversity

    Overdispersed Spatial Patterning of Dominant Bunchgrasses in Southeastern Pine Savannas

    Get PDF
    Spatial patterning is a key natural history attribute of sessile organisms that frequently emerges from and dictates potential for interactions among organisms. We tested whether bunchgrasses, the dominant plant functional group in longleaf pine savanna groundcover communities, are nonrandomly patterned by characterizing the spatial dispersion of three bunchgrass species across six sites in Louisiana and Florida. We mapped bunchgrass tussocks of \u3e5.0 cm basal diameter in three [Formula: see text] plots at each site. We modeled tussocks as two-dimensional objects to analyze their spatial relationships while preserving sizes and shapes of individual tussocks. Tussocks were overdispersed (more regularly spaced than random) for all species and sites at the local interaction scale (\u3c0.3 m). This general pattern likely arises from a tussock-centered, distance-dependent mechanism, for example, intertussock competition. Nonrandom spatial patterns of dominant species have implications for community assembly and ecosystem function in tussock-dominated grasslands and savannas, including those characterized by extreme biodiversity

    Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2

    Get PDF
    Dlx2, Lymphoid Enhancer Factor (Lef-1) and Msx2 transcription factors are required for several developmental processes. To understand the control of gene expression by these factors, chromatin immunoprecipitation (ChIP) assays identified Msx2 as a downstream target of Dlx2 and Lef-1. Dlx2 activates the Msx2 promoter in several cell lines and binds DNA as a monomer and dimer. A Lef-1 β-catenin-dependent isoform minimally activates the Msx2 promoter and a Lef-1 β-catenin-independent isoform is inactive, however co-expression of Dlx2 and both Lef-1 isoforms synergistically activate the Msx2 promoter. Co-immunoprecipitation and protein pull-down experiments demonstrate Lef-1 physically interacts with Dlx2. Deletion analyses of the Lef-1 protein reveal specific regions required for synergism with Dlx2. The Lef-1 β-catenin binding domain (βDB) is not required for its interaction with Dlx2. Msx2 can auto-regulate its promoter and repress Dlx2 activation. Msx2 repression of Dlx2 activation is dose-specific and both bind a common DNA-binding element. These transcriptional mechanisms correlate with the temporal and spatial expression of these factors and may provide a mechanism for the control of several developmental processes. We demonstrate new transcriptional activities for Dlx2, Msx2 and Lef-1 through protein interactions and identification of downstream targets

    Tissue-specific alternative splicing of TCF7L2

    Get PDF
    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174

    Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq

    Get PDF
    Alternative promoters that are differentially used in various cellular contexts and tissue types add to the transcriptional complexity in mammalian genome. Identification of alternative promoters and the annotation of their activity in different tissues is one of the major challenges in understanding the transcriptional regulation of the mammalian genes and their isoforms. To determine the use of alternative promoters in different tissues, we performed ChIP-seq experiments using antibody against RNA Pol-II, in five adult mouse tissues (brain, liver, lung, spleen and kidney). Our analysis identified 38 639 Pol-II promoters, including 12 270 novel promoters, for both protein coding and non-coding mouse genes. Of these, 6384 promoters are tissue specific which are CpG poor and we find that only 34% of the novel promoters are located in CpG-rich regions, suggesting that novel promoters are mostly tissue specific. By identifying the Pol-II bound promoter(s) of each annotated gene in a given tissue, we found that 37% of the protein coding genes use alternative promoters in the five mouse tissues. The promoter annotations and ChIP-seq data presented here will aid ongoing efforts of characterizing gene regulatory regions in mammalian genomes

    Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Drosophila </it>Groucho and its human Transducin-like-Enhancer of Split orthologs (TLEs) function as transcription co-repressors within the context of Wnt signaling, a pathway with strong links to cancer. The current model for how Groucho/TLE's modify Wnt signaling is by direct competition with β-catenin for LEF/TCF binding. The molecular events involved in this competitive interaction are not defined and the actions of Groucho/TLEs within the context of Wnt-linked cancer are unknown.</p> <p>Methods</p> <p>We used <it>in vitro </it>protein interaction assays with the LEF/TCF family member LEF-1, and <it>in vivo </it>assays with Wnt reporter plasmids to define Groucho/TLE interaction and repressor function.</p> <p>Results</p> <p>Mapping studies reveal that Groucho/TLE binds two regions in LEF-1. The primary site of recognition is a 20 amino acid region in the Context Dependent Regulatory domain. An auxiliary site is in the High Mobility Group DNA binding domain. Mutation of an eight amino acid sequence within the primary region (RFSHHMIP) results in a loss of Groucho action in a transient reporter assay. <it>Drosophila </it>Groucho, human TLE-1, and a truncated human TLE isoform Amino-enhancer-of-split (AES), work equivalently to repress LEF-1•β-catenin transcription in transient reporter assays, and these actions are sensitive to the HDAC inhibitor Trichostatin A. A survey of Groucho/TLE action in a panel of six colon cancer cell lines with elevated β-catenin shows that Groucho is not able to repress transcription in a subset of these cell lines.</p> <p>Conclusion</p> <p>Our data shows that Groucho/TLE repression requires two sites of interaction in LEF-1 and that a central, conserved amino acid sequence within the primary region (F S/T/P/xx y I/L/V) is critical. Our data also reveals that AES opposes LEF-1 transcription activation and that both Groucho and AES repression require histone deacetylase activity suggesting multiple steps in Groucho competition with β-catenin. The variable ability of Groucho/TLE to oppose Wnt signaling in colon cancer cells suggests there may be defects in one or more of these steps.</p
    corecore