1,728 research outputs found

    Pressure, Resistance, and Current Activation of Anisotropic Compressible Hall States

    Full text link
    Thermodynamic and electric properties of anisotropic compressible Hall states at higher Landau levels are studied using a mean field theory on the von Neumann lattice basis. It is shown that resistances agree with the recent experiments of anisotropic compressible states and the states have negative pressure. As implications, the collapse phenomena of the integer quantum Hall effect are discussed.Comment: 4 pages, 5 figures, to be published in Physica

    The History of the "History Problem": Historical Recognition between Japan and Neighboring Asian Countries

    Get PDF

    Selective Activation of Alternative MYC Core Promoters by Wnt-Responsive Enhancers.

    Get PDF
    In Metazoans, transcription of most genes is driven by the use of multiple alternative promoters. Although the precise regulation of alternative promoters is important for proper gene expression, the mechanisms that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in colon carcinoma cells, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using reporter assays and in the context of the endogenous Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by the distinct core promoter elements that are present in the MYC promoters. Taken together, our results provide new insight into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more precise combinatorial regulation of transcription initiation

    Current distribution in Hall bars and breakdown of the quantum Hall effect

    Full text link
    A numerical study is made of current distribution in small Hall bars with disorder. It is observed, in particular, that in the Hall-plateau regime the Hall current tends to concentrate near the sample edges while it diminishes on average in the sample interior as a consequence of localization. Also reported is another numerical experiment on a related, but rather independent topic, the breakdown of the quantum Hall effect. It is pointed out that the competition of the Hall field with disorder in the sample interior, an intra-subband process, can account for both the magnitude and magnetic-field dependence (proportional to B^{3/2}) of the critical breakdown fields observed experimentally.Comment: 6 pages, Revtex, 3 figures, ep2ds-1

    Exploration of Small RNAs

    Get PDF
    For several decades, only a limited number of noncoding RNAs, such as ribosomal and transfer RNA, have been studied in any depth. In recent years, additional species of noncoding RNAs have increasingly been discovered. Of these, small RNA species attract particular interest because of their essential roles in processes such as RNA silencing and modifications. Detailed analyses revealed several pathways associated with the function of small RNAs. Although these pathways show evolutional conservation, there are substantial differences. Advanced technologies to profile RNAs have accelerated the field further resulting in the discovery of an increasing number of novel species, suggesting that we are only just beginning to appreciate the complexity of small RNAs and their functions. Here, we review recent progress in novel small RNA exploration, including discovered small RNA species, their pathways, and devised technologies

    Developments on Wetting Effects in Microfluidic Slug Flow

    Get PDF
    Wetting effects form a dimension of fluid dynamics that becomes predominant, precisely controllable and possibly useful at the micro-scale. Microfluidic multiphase flow patterns, including size, shape and velocity of fluidic particles, and mass and heat transfer rates are affected by wetting properties of microchannel walls and surface tensions forces between fluid phases. The novelty of this field, coupled to difficulties in experimental design and measurements, means that literature results are scarce and scientific understanding is incomplete. Numerical methods developed recently have enabled a shortcut in obtaining results that can be perceived realistic, and that offer insight otherwise not possible. In this work the effect of the contact angle on gas-liquid two-phase flow slug formation in a microchannel T-junction was studied by numerical simulation. The contact angle, varied from 0 to 140 degrees, influenced the interaction of the gas and liquid phases with the channel wall, affecting the shape, size and velocity of the slugs. The visualisation of the cross-sectional area of gas slugs allowed for insight into the existence of liquid flow along rectangular microchannel corners, which was affected by the contact angle and determined the occurrence of velocity slip. The velocity profile within the gas slugs was also found to change as a function of contact angle, with hydrophilic channels inducing greater internal circulation, compared to greater channel wall contact in the case of hydrophobic channels. These effects play a role in heat and mass transfer from channels walls and highlight the value of numeral simulation in microfluidic design

    Numerical Modeling and Experimental Investigation of Gas-Liquid Slug Formation in a Microchannel T-Junction

    Get PDF
    Gas-liquid two-phase flow in a microfluidic T-junction with nearly square microchannels of 113 Ī¼m hydraulic diameter was investigated experimentally and numerically. Air and water superficial velocities were 0.018ā€“0.791 m/s and 0.042ā€“0.757 m/s, respectively. Three-dimensional modeling was performed with computational fluid dynamics (CFD) software FLUENT and the volume-of-fluid (VOF) model. Slug flow (snapping/breaking/jetting) and stratified flow were observed experimentally. Numerically predicted void fraction followed a linear relationship with the homogeneous void fraction, while experimental values depended on the superficial velocity ratio UG/UL. Higher experimental velocity slip caused by gas inlet pressure build-up and oscillation caused deviation from numerical predictions. Velocity slip was found to depend on the cross-sectional area coverage of the gas slug, the formation of a liquid film and the presence of liquid at the channel corners. Numerical modeling was found to require improvement to treat the contact angle and contact line slip, and could benefit from the use of a dynamic boundary condition to simulate the compressible gas phase inlet reservoir

    Gas-Liquid Slug Formation at a Rectangular Microchannel T-Junction: A CFD Benchmark Case

    Get PDF
    Computational fluid dynamics (CFD) is an important tool for development of microfluidic systems based on gas-liquid two-phase flow. The formation of Taylor slugs at microchannel T-junctions has been studied both experimentally and numerically, however discrepancies still exist because of difficulties in correctly representing experimental conditions and uncertainties in the physics controlling slug flow, such as contact line and velocity slip. In this paper detailed methods and results are described for the study of Santos and Kawaji [1] on the comparison of experimental results and numerical modeling. The system studied consisted of a rectangular microchannel T-junction nominally 100Ī¼m in hydraulic diameter, used to generate Taylor slugs from air-water perpendicular flow. The effect of flow rates on parameters such as slug length, velocity slip, void fraction and two-phase frictional pressure drop were studied. Numerical simulation was performed using FLUENT volume-of-fluid (VOF) model. It is proposed in this paper that this microfluidic problem be taken up by researchers in the field as a benchmark case to test other numeric codes in comparison to FLUENT on the prediction of micro-scale multiphase flow, and also to model in more detail the experimental system described to obtain greater accuracy in prediction of microfluidic slug formation

    Observation of the Ettingshausen effect in quantum Hall systems

    Full text link
    Evidence of the Ettingshausen effect in the breakdown regime of the integer quantum Hall effect has been observed in a GaAs/AlGaAs two-dimensional electron system. Resistance of micro Hall bars attached to both edges of a current channel shows remarkable asymmetric behaviors which indicate an electron temperature difference between the edges. The sign of the difference depends on the direction of the electric current and the polarity of the magnetic field. The results are consistent with the recent theory of Akera.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
    • ā€¦
    corecore