15 research outputs found

    2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA

    Get PDF
    Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.publishedVersio

    Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation

    Get PDF
    Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.M.M.O. was supported by a predoctoral fellowship from the University of the Basque Country (PIF18/317) and later partially supported by the Ikerbasque, Basque Foundation for Science IKUR strategy Neurodegenprot project. A.L. and U.F.P. were recipients of pre-doctoral fellowships from the Basque Government (PRE_2019_1_0184 and PRE_2018_1_0253). The study was supported by funding to I.J.H. from the Instituto de Salud Carlos III (PI17-00380; PI20/00096) and the Basque Government Department of Health (Osasun Saila, Eusko Jaurlaritzako) (grants 2021111070; 2022333050; 2018111043; 2018222031). A.Sp. receives support from Miriam Marks Senior Fellowship, Brain Research UK (202021-26), the Research Councils UK (MR/X002365/1) and the Lily Foundation. W.H.Y. is supported by the National Institute of Neurological Disorders and Stroke (5R01 NS121298-03) of the National Institutes of Health, Oklahoma Center for Adult Stem Cell Research (OCASCR) (221009 and 241006) and Presbyterian Health Foundation (4411-09-10-0).Peer reviewe

    Strategies for maximizing removal of lactic acid from acid whey – Addressing the un-processability issue

    No full text
    Maximum removal of lactic acid (LA) from acid whey (AW) is essential for further processing of the AW waste stream. Hence, one and two step nanofiltration (NF) and nano diafiltration (NDF) approaches were applied to evaluate the removal efficiency of LA from AW at low and high pH, respectively. NDF at pH 3.0 achieved removal of ∼50-55% LA with a diafiltration factor (DF) of 4. Addition of diafiltration water with adjusted pH to prevent the pH fluctuations with dilutions had no significant impact on the extent of LA permeation. Adjusting pH of AW to pH 7.3 or 10.5 resulted in formation of precipitates which were removed by centrifugation, bringing about ∼22% removal of LA. The resultant supernatants were further subjected to NDF giving an overall LA removal of ∼51-55%. Additional removal of LA appeared hindered due to strong complexation of LA with lactose. This complex remained with the retentate due to the rise in molecular weight. Using a stepwise pH adjustment, first to obtain a supernatant at pH 10.5 followed by pH readjustment to 3.0 and then NF, it was possible to achieve an overall LA removal of ∼66%. Stepwise pH adjustment during NF of AW appears to be a feasible way to remove substantial amounts of LA to allow for downstream processing

    2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA

    No full text
    Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication

    In situ small angle X-ray scattering investigation of the thermal expansion and related structural information of carbon nanotube composites

    Get PDF
    In-situ thermal expansion tests on a series of carbon nanotube bucky-paper composites were performed with direct heating within a synchrotron SAXS source. The impact of the samples density and morphology as well as the chemistry and degree of decoration of the carbon nanotubes on the scattering patterns were investigated and correlated to the materials macro-properties. The results demonstrate that simple densification techniques, such as acetone dipping or gold electroless deposition, could reduce greatly the displacements of the carbon nanotubes within the structure and lead to more thermally stable materia
    corecore