95 research outputs found

    Phytoplankton niche generation by interspecific stoichiometric variation

    Get PDF
    For marine biogeochemical models used in simulations of climate change scenarios, the ability to account for adaptability of marine ecosystems to environmental change becomes a concern. The potential for adaptation is expected to be larger for a diverse ecosystem compared to a monoculture of a single type of (model) algae, such as typically included in biogeochemical models. Recent attempts to simulate phytoplankton diversity in global marine ecosystem models display remarkable qualitative agreement with observed patterns of species distributions. However, modeled species diversity tends to be systematically lower than observed and, in many regions, is smaller than the number of potentially limiting nutrients. According to resource competition theory, the maximum number of coexisting species at equilibrium equals the number of limiting resources. By simulating phytoplankton communities in a chemostat model and in a global circulation model, we show here that a systematic underestimate of phytoplankton diversity may result from the standard modeling assumption of identical stoichiometry for the different phytoplankton types. Implementing stoichiometric variation among the different marine algae types in the models allows species to generate different resource supply niches via their own ecological impact. This is shown to increase the level of phytoplankton coexistence both in a chemostat model and in a global self-assembling ecosystem model. Key Points: - Common Redfield stoichiometry in plankton models impedes phytoplankton diversity - Stoichiometric plasticity increases the chance for sustained diversity - Modelers should go beyond Redfield stoichiometry in multi-phytoplankton model

    Seeking international agreement on what it means to be 'native'

    Get PDF
    The management of harmful nonnative species is a priority for governments worldwide. However, confusion concerning what constitutes a “native” species has led to ambiguous or even contradictory wording in adopted legislation. A key issue concerns the treatment of species dispersing beyond their normal ranges in response to global change. Range-expanding species can have negative impacts on the ecosystems they colonize, prompting some authorities to class them as “nonnatives.” However, range-shifts are becoming increasingly necessary for species persistence in response to climate and habitat change. Distinguishing these “desirable” range-shifts from other human-driven introductions is therefore a core requirement of legislation. Here, we propose a simplified framework that can be applied unambiguously across the policy arena. We suggest that the “nonnative” moniker should apply exclusively to species transported outside their native range by direct transport (defined herein), leaving species moving via unassisted dispersal as “natives,” even if they are responding indirectly to anthropogenic change. We believe that widespread adoption of this simplified approach will facilitate more consistent multinational policies to target problematic invasive species

    Future warming and acidification result in multiple ecological impacts to a temperate coralline alga

    Get PDF
    Coralline algae are a crucial component of reef systems, stabilising reef substrate, providing habitat and contributing to accretion. Coralline algae and their surface microbial biofilms are also important as settlement cues for marine invertebrates, yet few studies address the impact of future environmental conditions on interactions between coralline algae, reef microbes and settlement by larvae of marine invertebrates. We exposed the temperate coralline algal species Amphiroa gracilis to warming and/or acidification scenarios for 21 days. Algae became bleached but photosystem II function was not measurably impacted. Settlement by larvae of the sea urchin Heliocidaris erythrogramma was reduced and the structure of the prokaryotic community associated with A. gracilis was altered. Coralline algae in ambient conditions were dominated by Alphaproteobacteria from the Rhodobacteraceae including Loktonella; those under warming were dominated by Bacteroidetes and Verrucomicrobia; acidification resulted in less Loktonella and more Planctomycetes and a combination of warming and acidification caused increases in Bacteroidetes, Verrucomicrobia and the Alphaproteobacteria family Hyphomonadaceae. These experiments indicate that predicted future environmental change may reduce the ability of some temperate reef coralline algae and associated reef microbes to facilitate settlement of invertebrate larvae as well as having a direct impact to algae via bleaching

    Preserving and Using Germplasm and Dissociated Embryonic Cells for Conserving Caribbean and Pacific Coral

    Get PDF
    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (−196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems

    Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis

    Get PDF
    Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles

    U.S. Natural Resources and Climate Change: Concepts and Approaches for Management Adaptation

    Get PDF
    Public lands and waters in the United States traditionally have been managed using frameworks and objectives that were established under an implicit assumption of stable climatic conditions. However, projected climatic changes render this assumption invalid. Here, we summarize general principles for management adaptations that have emerged from a major literature review. These general principles cover many topics including: (1) how to assess climate impacts to ecosystem processes that are key to management goals; (2) using management practices to support ecosystem resilience; (3) converting barriers that may inhibit management responses into opportunities for successful implementation; and (4) promoting flexible decision making that takes into account challenges of scale and thresholds. To date, the literature on management adaptations to climate change has mostly focused on strategies for bolstering the resilience of ecosystems to persist in their current states. Yet in the longer term, it is anticipated that climate change will push certain ecosystems and species beyond their capacity to recover. When managing to support resilience becomes infeasible, adaptation may require more than simply changing management practices—it may require changing management goals and managing transitions to new ecosystem states. After transitions have occurred, management will again support resilience—this time for a new ecosystem state. Thus, successful management of natural resources in the context of climate change will require recognition on the part of managers and decisions makers of the need to cycle between “managing for resilience” and “managing for change.

    Impacts of 1.5°C Global Warming on Natural and Human Systems

    Get PDF
    An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert

    Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata

    Get PDF
    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions

    Carnivore Translocations and Conservation: Insights from Population Models and Field Data for Fishers (Martes pennanti)

    Get PDF
    Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in the Pacific states of the US. Our model predicts that the most important factor influencing successful re-establishment of a fisher population is the number of adult females reintroduced (provided some males are also released). Data from 38 translocations of fishers in North America, including 30 reintroductions, 5 augmentations and 3 introductions, show that the number of females released was, indeed, a good predictor of success but that the number of males released, geographic region and proximity of the source population to the release site were also important predictors. The contradiction between model and data regarding males may relate to the assumption in the model that all males are equally good breeders. We hypothesize that many males may need to be released to insure a sufficient number of good breeders are included, probably large males. Seventy-seven percent of reintroductions with known outcomes (success or failure) succeeded; all 5 augmentations succeeded; but none of the 3 introductions succeeded. Reintroductions were instrumental in reestablishing fisher populations within their historical range and expanding the range from its most-contracted state (43% of the historical range) to its current state (68% of the historical range). To increase the likelihood of translocation success, we recommend that managers: 1) release as many fishers as possible, 2) release more females than males (55–60% females) when possible, 3) release as many adults as possible, especially large males, 4) release fishers from a nearby source population, 5) conduct a formal feasibility assessment, and 6) develop a comprehensive implementation plan that includes an active monitoring program
    corecore