211 research outputs found

    Extraction of incarcerated medial epicondyle from the elbow joint using conventional nerve stimulator:a case report

    Get PDF
    INTRODUCTION: Incarceration of the medial epicondyle is a well-recognised sequelae following closed reduction of the elbow. Manipulation for extraction is not usually successful and hence an incarcerated medial epicondyle is usually an indication for open reduction and fixation. CASE PRESENTATION: We describe a simple technique of closed reduction using a conventional nerve stimulator to extract an incarcerated medial epicondyle in a 13-year-old Caucasian boy. This technique uses contraction of the attached common flexor muscles to indirectly extract the trapped medial epicondyle. CONCLUSIONS: This is a simple technique using a commonly available nerve stimulator and may obviate the need for extensile open reduction for extraction of the incarcerated medial epicondyle. We would recommend this technique where closed reduction methods have failed

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    The Eyes Have It: Sex and Sexual Orientation Differences in Pupil Dilation Patterns

    Get PDF
    Recent research suggests profound sex and sexual orientation differences in sexual response. These results, however, are based on measures of genital arousal, which have potential limitations such as volunteer bias and differential measures for the sexes. The present study introduces a measure less affected by these limitations. We assessed the pupil dilation of 325 men and women of various sexual orientations to male and female erotic stimuli. Results supported hypotheses. In general, self-reported sexual orientation corresponded with pupil dilation to men and women. Among men, substantial dilation to both sexes was most common in bisexual-identified men. In contrast, among women, substantial dilation to both sexes was most common in heterosexual-identified women. Possible reasons for these differences are discussed. Because the measure of pupil dilation is less invasive than previous measures of sexual response, it allows for studying diverse age and cultural populations, usually not included in sexuality research

    Men and Women Exhibit a Differential Bias for Processing Movement versus Objects

    Get PDF
    Sex differences in many spatial and verbal tasks appear to reflect an inherent low-level processing bias for movement in males and objects in females. We explored this potential movement/object bias in men and women using a computer task that measured targeting performance and/or color recognition. The targeting task showed a ball moving vertically towards a horizontal line. Before reaching the line, the ball disappeared behind a masking screen, requiring the participant to imagine the movement vector and identify the intersection point. For the color recognition task, the ball briefly changed color before disappearing beneath the mask and participants were required only to identify the color shade. Results showed that targeting accuracy for slow and fast moving balls was significantly better in males compared to females. No sex difference was observed for color shade recognition. We also studied a third, dual attention task comprised of the first two, where the moving ball briefly changed color randomly just before passing beneath the masking screen. When the ball changed color, participants were required only to identify the color shade. If the ball didn't change color, participants estimated the intersection point. Participants in this dual attention condition were first tested with the targeting and color tasks alone and showed results that were similar to the previous groups tested on a single task. However, under the dual attention condition, male accuracy in targeting, as well as color shade recognition, declined significantly compared to their performance when the tasks were tested alone. No significant changes were found in female performance. Finally, reaction times for targeting and color choices in both sexes correlated highly with ball speed, but not accuracy. Overall, these results provide evidence of a sex-related bias in processing objects versus movement, which may reflect sex differences in bottom up versus top-down analytical strategies

    Operative versus non-operative management of pediatric medial epicondyle fractures: a systematic review

    Get PDF
    There is ongoing debate about the management of medial epicondyle fractures in the pediatric population. This systematic review evaluated non-operative versus operative treatment of medial epicondyle fractures in pediatric and adolescent patients over the last six decades. A systematic review of the available literature was performed. Frequency-weighted mean union times were used to compare union rates for closed versus open treatments. Moreover, functional outcomes and range-of-motion variables were correlated with varying treatment modalities. Any complications, including ulnar nerve symptoms, pain, instability, infection, and residual deformity, were cataloged. Fourteen studies, encompassing 498 patients, met the inclusion/exclusion criteria. There were 261 males and 132 female patients; the frequency-weighted average age was 11.93 years. The follow-up range was 6–216 months. Under the cumulative random effects model, the odds of union with operative fixation was 9.33 times the odds of union with non-operative treatment (P < 0.0001). There was no significant difference between operative and non-operative treatments in terms of pain at final follow-up (P = 0.73) or ulnar nerve symptoms (P = 0.412). Operative treatment affords a significantly higher union rate over the non-operative management of medial epicondyle fractures. There was no difference in pain at final follow-up between operative and non-operative treatments. As surgical indications evolve, and the functional demands of pediatric patients increase, surgical fixation should be strongly considered to achieve stable fixation and bony union

    Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    Get PDF
    Background: Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings: Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance: This indicated that a single latent variable influenced by a genetic component and common nonshared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation

    Establishment of a Replicating Plasmid in Rickettsia prowazekii

    Get PDF
    Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen

    Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    Get PDF
    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Human depression: a new approach in quantitative psychiatry

    Get PDF
    The biomolecular approach to major depression disorder is explained by the different steps that involve cell membrane viscosity, Gsα protein and tubulin. For the first time it is hypothesised that a biomolecular pathway exists, moving from cell membrane viscosity through Gsα protein and Tubulin, which can condition the conscious state and is measurable by electroencephalogram study of the brain's γ wave synchrony
    • 

    corecore