423 research outputs found

    The Use of Statistical Quality Control Charts to Evaluate Changes in Individual Performance

    Get PDF
    An employee's readiness to perform (RTP) has become an important issue facing today's industries. Some industries have turned to cognitive performance testing to provide answers regarding their employee's abilities to work safely and effectively. Such tests are designed to assess the employee's current state of preparedness for work without identifying specific causes for any noted performance impairment. This paper evaluates performance-based RTP tests with regard to the metrics by which performance change is judged. In addition to evaluating a current commonly used metric, several statistical quality control charts were examined as alternate methods for identifying impaired performance. Traditional Shewhart charts were used as well as exponentially weighted moving average charts and cumulative sum charts. A comparative analysis of the various methods revealed that control chart techniques provided superior effectiveness over the current method. Specifically, exponentially weighted moving average charts were effective in evaluating continuous performance measures and Shewhart p charts were effective in evaluating discrete measure data.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Entanglement of two-mode Bose-Einstein condensates

    Get PDF
    We investigate the entaglement characteristics of two general bimodal Bose-Einstein condensates - a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and thus the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.Comment: 11 pages, 8 figures, submitted to Physical Review A, to be presented at the third UQ Mathematical Physics workshop, Oct. 4-6; changes made in response to referee comment

    Modelling mucociliary clearance

    Get PDF
    Mathematical modelling of the fluid mechanics of mucociliary clearance (MCC) is reviewed and future challenges for researchers are discussed. The morphology of the bronchial and tracheal airway surface liquid (ASL) and ciliated epithelium are briefly introduced. The cilia beat cycle, beat frequency and metachronal coordination are described, along with the rheology of the mucous layer. Theoretical modelling of MCC from the late 1960s onwards is reviewed, and distinctions between ‘phenomenological’, ‘slender body theory’ and recent ‘fluid–structure interaction’ models are explained.\ud \ud The ASL consists of two layers, an overlying mucous layer and underlying watery periciliary layer (PCL) which bathes the cilia. Previous models have predicted very little transport of fluid in the PCL compared with the mucous layer. Fluorescent tracer transport experiments on human airway cultures conducted by Matsui et al. [Matsui, H., Randell, S.H., Peretti, S.W., Davis, C.W., Boucher, R.C., 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102 (6), 1125–1131] apparently showed equal transport in both the PCL and mucous layer. Recent attempts to resolve this discrepancy by the present authors are reviewed, along with associated modelling findings. These findings have suggested new insights into the interaction of cilia with mucus due to pressure gradients associated with the flat PCL/mucus interface. This phenomenon complements previously known mechanisms for ciliary propulsion. Modelling results are related to clinical findings, in particular the increased MCC observed in patients with pseudohypoaldosteronism. Recent important advances by several groups in modelling the fluid–structure interaction by which the cilia movement and fluid transport emerge from specification of internal mechanics, viscous and elastic forces are reviewed. Finally, we discuss the limitations of existing work, and the challenges for the next generation of models, which may provide further insight into this complex and vital system

    Spin squeezing and pairwise entanglement for symmetric multiqubit states

    Full text link
    We show that spin squeezing implies pairwise entanglement for arbitrary symmetric multiqubit states. If the squeezing parameter is less than or equal to 1, we demonstrate a quantitative relation between the squeezing parameter and the concurrence for the even and odd states. We prove that the even states generated from the initial state with all qubits being spin down, via the one-axis twisting Hamiltonian, are spin squeezed if and only if they are pairwise entangled. For the states generated via the one-axis twisting Hamiltonian with an external transverse field for any number of qubits greater than 1 or via the two-axis counter-twisting Hamiltonian for any even number of qubits, the numerical results suggest that such states are spin squeezed if and only if they are pairwise entangled.Comment: 6 pages. Version 3: Small corrections were mad

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore