1,173 research outputs found
Rydberg electrometry for optical lattice clocks
Electrometry is performed using Rydberg states to evaluate the quadratic Stark shift of the 5s2 1 S0-5s5p 3 P0 clock transition in strontium. By measuring the Stark shift of the highly excited 5s75d 1 D2 state using electromagnetically induced transparency, we characterize the electric field with sufficient precision to provide tight constraints on the systematic shift to the clock transition. Using the theoretically derived, and experimentally verified, polarizability for this Rydberg state, we can measure the residual field with an uncertainty well below 1Vmâ1. This resolution allows us to constrain the fractional frequency uncertainty of the quadratic Stark shift of the clock transition to 2Ă10â20
Elastic properties and inter-atomic bonding in new superconductor KFe2Se2 from first principles calculations
Very recently (November, 2010, PRB, 82, 180520R) the first 122-like ternary
superconductor KxFe2Se2 with enhanced TC ~ 31K has been discovered. This
finding has stimulated much activity in search of related materials and
triggered the intense studies of their properties. Indeed already in 2010-2011
the superconductivity (TC ~ 27-33K) was also found in the series of new
synthesized 122 phases such as CsxFe2Se2, RbxFe2Se2, (TlK)xFeySe2 etc. which
have formed today the new family of superconducting iron-based materials
without toxic As. Here, using the ab initio FLAPW-GGA method we have predicted
for the first time the elastic properties for KFe2Se2 and discussed their
interplay with inter-atomic bonding for this system. Our data reveal that the
examined phase is relatively soft material. In addition, this system is
mechanically stable, adopts considerable elastic anisotropy, and demonstrates
brittleness. These conclusions agree with the bonding picture for KFe2Se2,
where the inter-atomic bonding is highly anisotropic and includes ionic,
covalent and metallic contributions.Comment: 8 pages, 2 figure
Force and Motion Generation of Molecular Motors: A Generic Description
We review the properties of biological motor proteins which move along linear
filaments that are polar and periodic. The physics of the operation of such
motors can be described by simple stochastic models which are coupled to a
chemical reaction. We analyze the essential features of force and motion
generation and discuss the general properties of single motors in the framework
of two-state models. Systems which contain large numbers of motors such as
muscles and flagella motivate the study of many interacting motors within the
framework of simple models. In this case, collective effects can lead to new
types of behaviors such as dynamic instabilities of the steady states and
oscillatory motion.Comment: 29 pages, 9 figure
Ab initio study of elastic and electronic properties of cubic thorium pnictides ThPn and Th3Pn4 (Pn = P, As, and Sb)
Full-potential linearized augmented plane-wave method with the generalized
gradient approximation for the exchange-correlation potential was applied for
comparative study of elastic and electronic properties of six cubic thorium
pnictides ThPn and Th3Pn4, where Pn = P, As, and Sb. Optimized lattice
parameters, theoretical density, independent elastic constants (Cij), bulk
moduli (B), shear moduli (G), Young's moduli (Y), and Poisson's ratio ({\nu})
were obtained for the first time and analyzed in comparison with available
theoretical and experimental data. The electronic band structures, total and
partial densities of states for all ThPn and Th3Pn4 phases were examined
systematically. Moreover, the inter-atomic bonding pictures in thorium
pnictides, as well as the relative stability of ThPn versus Th3Pn4 phases were
discussed.Comment: 20 pages, 6 figure
Effect of atrial fibrillation on endovascular thrombectomy for acute ischemic stroke. A meta-analysis of individual patient data from six randomised trials: Results from the HERMES collaboration
Background: Atrial fibrillation is an important risk factor for ischemic stroke, and is associated with an increased risk of poor outcome after ischemic stroke. Endovascular thrombectomy is safe and effective in acute ischemic stroke patients with large vessel occlusion of the anterior circulation. This meta-analysis aims to investigate whether there is an interaction between atrial fibrillation and treatment effect of endovascular thrombectomy, and secondarily whether atrial fibrillation is associated with worse outcome in patients with ischemic stroke due to large vessel occlusion. Methods: Individual patient data were from six of the recent randomised clinical trials (MR CLEAN, EXTEND-IA, REVASCAT, SWIFT PRIME, ESCAPE, PISTE) in which endovascular thrombectomy plus standard care was compared to standard care alone. Primary outcome measure was the shift on the modified Rankin scale (mRS) at 90 days. Secondary outcomes were functional independence (mRS 0â2) at 90 days, National Institutes of Health Stroke Scale score at 24 h, symptomatic intracranial hemorrhage and mortality at 90 days. The primary effect parameter was the adjusted common odds ratio, estimated with ordinal logistic regression (shift analysis); treatment effect modification of atrial fibrillation was assessed with a multiplicative interaction term. Results: Among 1351 patients, 447 p
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
Search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ
A search for the lepton-flavor-violating decays Bs0âe±Όâ and B0âe±Όâ is performed with a data sample, corresponding to an integrated luminosity of 1.0ââfb-1 of pp collisions at âs=7ââTeV, collected by the LHCb experiment. The observed number of Bs0âe±Όâ and B0âe±Όâ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0âe±Όâ)101ââTeV/c2 and MLQ(B0âe±Όâ)>126ââTeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
- âŠ